为什么5G需要边缘计算(MEC)?

无线深海 2020-11-29 00:00

边缘计算,从4G时代已经开始萌芽,到了5G时代,它完全融入了网络的基础架构,成为了不折不扣的标配,甚至是业务扩展的利器。

那么到底什么是边缘计算呢?本文将要探讨这个问题。


1


   

为什么需要边缘计算?


说到“边缘”二字,跟“中央”的意思相反,暗含着“等级低”,“不重要”,“靠边站”的意味。既然如此,大搞“中央计算”就行了,还研究什么“边缘计算”?

其实,在信息网络中,“中央”和“边缘”的地位跟我们直观的认知是相反的。中央存在的价值,就是更好地为边缘服务。

从上图可以看出,网络的中央节点是由接入,承载,交换等复杂架构以及各种服务器组成的一朵云,它存在的价值,就是为了满足网络边缘处不同终端形形色色的需求:个人通信,游戏娱乐,智能家居,工业控制等等。

技术的发展,就是在人类这些不断膨胀的需求所驱动之下完成的。

5G的三大应用场景,正是这些需求的总结:增强型移动宽带(eMBB)针对高清视频等系列应用,大规模机器类型通信(mMTC)针对像智慧城市这样的海量物联网系列应用,超高可靠性低延时通信(uRLLC)则针对像工业控制或者远程驾驶之类的专业领域应用。

这些应用要求大带宽,低时延,高算力,个个实现起来都不简单。

一个最行之有效的方法就是缩短数据传输的距离,把提供服务的节点从中央下放到网络边缘,离用户更近。这样一来,无论是带宽,时延,还是算力,解决起来就容易了许多。

这样的解决方案就叫做“边缘计算”。

边缘计算最常用的比喻就是章鱼的神经系统。它的大脑作为中央节点只处理40%的信息,主要负责总体协同,剩余的60%的信息则由8条触手(相当于边缘节点)就近处理。

也就是说,章鱼可以使用“腿”来思考,并就地解决问题!这种灵活高效的信息处理方式,成就了这种无脊椎动物的智力巅峰。

边缘计算,可以说承载了5G时代万物互联的梦想。


2

   

什么是MEC?

我们平时使用的4G和5G都属于移动通信,在移动网络下的边缘计算,也就理所当然地被称作“移动边缘计算(Mobile Edge Computing)”,缩写作MEC。
MEC的概念最早源于卡内基梅隆大学在2009年所研发的一个叫做Cloudlet的计算平台。这个平台将云服务器上的功能下放到边缘服务器,以减少带宽和时延,又被称为“小朵云”。
2014年,欧洲电信标准协会(ETSI)正式定义了MEC的基本概念并成立了MEC规范工作组,开始启动相关标准化工作。
2016年,ETSI把MEC的概念扩展为Muti-access Edge Computing,意为“多接入边缘计算”,并将移动蜂窝网络中的边缘计算应用推广至像Wi-Fi这样的其他无线接入方式。
在ETSI的推动下 ,3GPP以及其他标准化组织也相继投入到了MEC的标准研究工作中。目前,MEC已经发展演进为5G移动通信系统的重要技术之一。
要理解MEC,首先需要了解MEC中涉及到的4个基本概念:
    云,边,网,端,形成了一个协同的有机整体
:云计算以及用以支撑云计算的基础设施及资源,也被称作云端,是提供服务的中心节点。
:边缘,也就是边缘计算节点,本文的主角,离终端最近的服务节点。
:云端和边缘,以及边缘和用户之间的网络,默默无闻但非常重要的底层工作者。
:也就是终端,是云,边,网服务的对象,包含手机,平板,电视等一切可以联网的设备,其位置在网络的最外围,是各种数据的消费者,也成了内容的生产者(如短视频,直播等)。
如果还用章鱼来比喻的话,“ ”就像大脑,“ ”就像触手,“ ”就像连接大脑和触手的肌肉,“ ”则就是章鱼要捕获的食物。云边网端协同,构成了MEC系统的有机体,让信息更快更好地得以流动。

3

   

怎样部署MEC?

目前在市场上,5G时代的MEC玩家主要有两类:互联网厂家,电信运营商。它们手中的资源不同,推出的边缘计算方案自然也有差异。
首先我们来看看ETSI定义的5G和MEC融合架构。
5G核心网最关键的网元: UPF(User Plane Function,用户面功能) ,是连接5G核心网和MEC的纽带,可提供数据分流及流量统计等功能。
如上图所示,左侧是5G网络,包含核心网(含AMF,SMF,PCF等一系列控制面网元,以及用户面网元UPF),接入网(RAN)以及终端(UE)。右侧则是MEC,包含MEC平台,管理编排域,以及多个提供服务的APP。
5G网络和MEC之间的结合点就是UPF。这个网元的全称是User Plane Function,顾名思义,就是处理核心网用户面功能的。所有的数据,必须经过UPF转发,才能流向外部网络。
也就是说,负责边缘计算的MEC设备,必须连接在5G核心网的UPF这个网元之后。
5G的核心网设计是十分灵活的,为了减少数据传输的迂回,UPF的部署位置也一般比控制面网元要靠下,这就叫做UPF下沉。
举例来说,中国移动的核心网在全国分为8个大区,每个大区管理数个省份,但在这些大区的机房中只部署有控制面网元,UPF则下沉到省中心,乃至地市,区县,方便实现本地数据本地消化。
这样的架构,就为MEC的贴近网络边缘部署提供了条件。
对于运营商来说,整个网络都是他们的,因此部署MEC的位置非常灵活,在边缘UPF的基础上增加MEC的功能,形成边缘一体化增强型UPF是最简洁的方案。
根据服务区域的大小和个性化需求,MEC可以跟核心网位于同一数据中心(下图中的4),还可以跟下沉的UPF一起位于汇聚节点(下图中的3),也可以和UPF一起集成在某个传输节点(下图中的2),甚至还能跟基站融合到一起(下图中的1),离用户近在咫尺。
1. MEC,UPF和基站融合到一起
2. MEC跟下沉的UPF一起集成在某个传输节点
3. MEC跟下沉的UPF一起位于汇聚节点
4. MEC跟核心网部署于于同一数据中心
对于互联网厂家来说,虽然也在积极推进边缘计算,但由于它们手中没有网络,只能通过和运营商的UPF对接这样的方式来支持MEC。
如下图所示,互联网厂家的边缘计算平台需要和各个运营商的UPF对接,通过UPF再连接到不同运营商的基站,从而把服务送达每个用户。
  互联网厂家的边缘计算平台需要和运营商的UPF对接,把运营商的网络作为传输管道
因此可以这么说,互联网厂家“云”的能力较强,它们通过把能力从“云”向“网”拓展来支持“边”(MEC);而运营商对“网”是全面掌控的,从而支持“边”是顺理成章的事情,但它们需要增强“云”的能力。
在MEC的支持下,云端算力下沉,终端算力上移,从而在边缘计算节点形成兼顾时延,成本和算力的汇聚点,这就是MEC存在的核心价值。
并且,在工业园区的网络还存在数据安全,以及内网访问的需求,MEC可以作为运营商和企业内网之间的桥梁,实现内网数据不出园区,本地流量本地消化的好处。
MEC和UPF联合起来可以进行灵活的数据分流,内网数据直接走内网通道,私密数据不出园区;外网数据也可直通互联网,并行不悖,两不耽误。
在5G时代,以行业应用为中心的2B业务,以及增强的2C业务都对网络提出的更高的要求,高带宽,低时延,高算力的需求不断激发着MEC更快地发展。
MEC,这棵在4G时代萌芽的幼苗,在5G时代的3大场景都被寄予厚望。如此根正苗红的种子选手,必将在不远的将来时代长为参天大树,全面赋能5G网络。
好了,本期的内容就到这里,希望对大家有所帮助。



延伸阅读
5G边缘计算:这回要当主角
↑↑ 上文详细介绍了5G边缘计算的起源以及部署,值得一读。
变态!说的就是你,5G核心网
↑↑↑ 5G核心网,从毛毛虫到蝴蝶的蜕变,打开不会后悔。
— END —
无线深海 移动通信交流,无线通信发展趋势,最新动态,原创科普文章发表。
评论
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 58浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 74浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 78浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 105浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 59浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 155浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 82浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 61浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 55浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 77浏览
  • 说到福特,就要从亨利·福特(Henry Ford)这个人物说起。在发明大王爱迪生的电气工厂担任工程师的福特下班后,总是在自家仓库里努力研究和开发汽车。1896年,福特终于成功制造出一辆三轮车,开启了福特汽车的传奇。最初几年,福特都是独自制造汽车并同时进行销售。 (今天很多人都知道的精益管理中的5S方法,或多或少地受到了福特 CANDO方法的影响。)1903年,福特从牧师、律师、银行家、会计师等十一位股东那里筹集了十万美元,并在自家庭院成立了美国第五百零三家汽车公司——福特汽车公司(Fo
    优思学院 2025-01-10 11:21 29浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦