ZYNQMPSOC浅说

FPGA开源工作室 2024-06-27 18:25

1 MPSOC PL端

Zynq UltraScale+ MPSoC PL 部分等价于 FPGA。简化的 FPGA 基本结构由 6 部分组成,分别为可编程输入/输出单元、基本可编程逻辑单元、嵌入式块RAM、丰富的布线资源、底层嵌入功能单元和内嵌专用硬核等。

2 MPSOC PS端

MPSoC 实际上是一个以处理器为核心的系统,PL 只是它的一个外设。MPSoC 系列的亮点在于它包含了完整的 ARM 处理器系统,且处理器系统中集成了内存控制器和大量的外设,使 Cortex-A53 处理器可以完全独立于可编程逻辑单元。而且实际上在 MPSoC 中,PL 和 PS 两部分的供电电路是独立的,这样 PS 或 PL 部分不被使用的话就可以被断电。
SOPC–FPGA 可以用来搭建嵌入式处理器,像 Xilinx 的 MicroBlaze 处理器或者 Altera 的 Nios II 处理器。像这种使用 FPGA 的可编程逻辑资源搭建的处理器我们称之为“软核”处理器,它的优势在于处理器的数量以及实现方式的灵活性。
而 MPSoC 中集成的是一颗“硬核”处理器,它是硅芯片上专用且经过优化的硬件电路,硬核处理器的优势是它可以获得相对较高的性能。另外,MPSoC 中的硬件处理器和软核处理器并不冲突,我们完全可以使用 PL 的逻辑资源搭建一个 Microblaze 软核处理器,来和 ARM 硬核处理器协同工作。MPSoC 处理器系统集成了 Arm Cortex-A53 和 Arm Cortex-R5F 内核处理器,并且像 EG、EV 器件还集成了图像处理单元,再加上丰富的外设接口,可以说 MPSoC 的 PS 端是一个非常优秀的片上系统。

从上面的结构图中可以很清楚的看到 MPSoC 的结构,它分为 PS 和 PL 两部分。在 PS 部分中它主要由Arm Cortex-A53(APU 共 4 个核)、Arm Cortex-R5F(RPU 共两个核)以及 Arm Mali-400 MP2(GPU)三种内核处理器构成,并且还包括 DDR 控制单元、平台管理单元、高速外设控制器以及普通外设控制器等外设组成。

1)APU(Application Processing Unit)

APU 主要是由两个或者四个 ARM 处理器核组成的,Cortex-A53 核心是基于 Arm-v8A 架构的 32 位/64位应用程序处理器,拥有极佳的性能/功率比,每一个 Cortex-A53 核心拥有 32KB 指令和数据 L1 缓存,具有奇偶校验、ECC 保护、NEON SIMD 引擎、单精度和双精度浮点单元。除了这些模块,APU 还有一个 snoop控制单元以及一个带 ECC 保护的 1MB L2 缓存,这样的设计可以更好的提高系统级的性能。该 APU 还具有内置的中断控制器支持虚拟中断。

2) RPU(Real-Time Processing Unit)

PS 中的 RPU 包含一个双核 Arm Cortex-R5F 处理器,Cortex-R5F 是 32 位实时处理器,它是基于 Arm-v7R架构的处理器内核。每个 Cortex-R5F 核都有 32KB 的指令和数据缓存(L1),除了 L1 缓存,每个 Cortex-R5F核心还具有 128KB 的紧耦合内存(TCM)接口,用于实时单周期访问。RPU 还有一个专用的中断控制器。两个 RPU 既可工作在独立模式,也可以工作在同步模式。在独立模式中两个处理器都是独立运行的;在同步模式下,它们彼此并行运行,逻辑资源也会综合到一起,并且 TCM 资源也整合成 256KB。RPU 还可以通过 AXI-4 端口与 PS 端的 LPD 区域进行通信或者与 PL 端进行低延迟通信。支持实时 DEBUG 和信号跟踪,每个内核还具有一个嵌入式跟踪宏单元(ETM)方便 Arm 内核调试。Cortex-R5 处理器是用于深度嵌入式实时系统的 CPU,它采用了 Thumb-2 技术以获得最佳的代码密度和处理吞吐量,它还具有一个算术逻辑单元(ALU),为了更加有效地利用其他资源(例如寄存器资源),算术逻辑单元会执行有限的双重指令。Cortex-R5 处理器会通过重新启动和加载多个指令来保持较低的中断延迟,并且还会使用一个专用的外围端口来实现对中断控制器的低延迟访问。处理器具有紧密耦合内存(TCM)端口,用于低延迟和确定性地访问本地 RAM。错误检查和纠正功能(ECC)是用于 Cortex-R5 处理器端口和 Level 1 (L1)存储器的,这样可以提高系统的可靠性和准确性。

3)GPU(Graphics Processing Unit)

GPU 是基于 Arm Mali-400 MP2 硬件加速器的 2D 和 3D 图形子系统。它由一个几何图形处理器(GP)、两个像素处理器(PP)、64KB L2 缓存控制器(L2)、针对 GP 和每个 PP 的独立内存管理单元(MMU)以及128 位 AXI 总线接口构成。Arm Mali-400 MP2 作为 PS 专用的图形处理器它可以支持 2D 和 3D 图形加速,最高分辨率为 1080p,对于 3D 图形它能够支持 OpenGL ES 1.1 and 2.0 规范而对于 2D 的矢量图形它只能支持 Open VG 1.1 标准。它的几何处理器(GP)和 2 个像素处理器会并行地执行贴图渲染操作。它为 GP 和像素处理器提供了专用的内存管理单元,支持 4 KB 的页面大小。
GPU 还有 64KB 的二级(L2)只读缓存,它支持 4X 和 16X 全场景抗锯齿(FSAA)功能。它有内置的硬件纹理解压缩,允许纹理在图形硬件中保持压缩(ETC 格式),并在运行中解压所需的样本。它还支持在不消耗额外带宽的情况下有效地混合多个硬件层,它的像素填充率为 200 万像素/秒/MHz,三角形填充率为0.1Mvertex/秒/MHz。GPU 支持广泛的纹理格式为 RGBA 8888、565、1556 以及 YUV 格式,对于功率敏感的应用,GPU 支持对每个 GP、像素处理器和 L2 缓存的时钟和功率进行门控。在功率门控过程中,GPU 不消耗任何静态或动态功率;在时钟门控过程中,它只消耗静态电源。

4)DDR Memory Controller

DDR 存储控制器通过六个 AXI 数据接口和一个 AXI 控制接口连接到 MPSoC 的其余部分,其中一条数据路径连接到实时处理单元(RPU),两条数据路径连接到缓存相干互连(CCI-400),其他的在 DisplayPort 控制器、FPD、DMA 和编程逻辑(PL) 上多路复用。在 6 个接口中,5 个是 128 位宽,而第 6 个接口(绑定到RPU)是 64 位宽。DDR 子系统支持 DDR3,DDR3L、LPDDR3、DDR4 和 LPDDR4,它可以通过 AXI 总线接口接收来自 6 个应用主机端口的读写请求,这些请求在内部排队访问 DRAM 设备。存储器控制器在 DDR PHY 接口上向 PHY 模块发出命令,PHY 模块从 DRAM 中读取和写入数据。DDR Memory Controller 的结构如下图所示:

5) PMU(Platform Management Unit)

Zynq UltraScale+ MPSoC 包括一个专用的用户可编程处理器,用于电源、错误管理的平台测量单元(PMU)处理器,以及用于功能安全应用的可选软件测试库(STL)。
PMU 的功能如下:
1、 使用系统监视器检查电源水平,以确保 CSU 和 LP 域的其余部分正常运行。
2、 初始化 pll 的默认配置和他们潜在的旁路。
3、 触发和排序必要的扫描和 MBIST。
4、 捕获并发出错误信号,错误 ID 可以通过 JTAG 读取。
5、 释放复位到 CSU。
6、 在应用程序和实时处理器处于睡眠状态时充当它们的委托,并在接收到它们的唤醒请求之后对他们进行开机和重启。
7、 在任何时候维护系统电源状态。
8、 处理不同块的上电、下电、复位、内存内置自修复(MBISR)、MBIST 和扫描归零所需的低级事件序列。
9、 在休眠模式下管理系统,并基于各种触发机制唤醒系统。
10、 PS-level 错误捕获。

6)High-Speed Connect

Zynq UltraScale+ MPSoC 的 PS 端集成了 5 个高速外设,分别是 DP 控制器、USB3.0 控制器、SATA3.1控制器、PCIE 1.0/2.0 控制器以及 PS-GTR 收发器。下面我们来分别介绍一下这几个高速控制器。
1、 DP 接口(DisplayPort 控制器):Zynq UltraScale+ MPSoC 的 PS 端集成了 DisplayPort 控制器,它可以从内存(非实时输入)或(实时输入)可编程逻辑(PL)中获取数据,并将这些数据处理过后通过DisplayPort 源控制器块输出到外部显示设备或 PL(实时输出)上。DisplayPort 控制器由 DMA、缓冲区管理器、显示渲染块、音频混音块、DisplayPort 源控制器以及 PS-GTR 模块组成,它可以支持超高清(UHD)视频,因此 DP 接口常用来做视频图像传输的接口。
2、 USB3.0:USB 3.0 控制器由两个独立的 DRD (dual-role device)控制器组成,两者都可以单独配置为在任何给定时间作为主机或从机设备工作的模式。USB 3.0 DRD 控制器通过高级的可扩展 AXI 从接口,可以为系统软件提供一个可扩展的主控制器接口(xHCI)。控制器中有一个内部的 DMA 引擎,它利用 AXI 主接口来传输数据。三个双端口 RAM 的配置可以实现 RX 数据 FIFO、TX 数据 FIFO和描述符/寄存器缓存功能传输的功能,AXI 主端口与协议层可以通过缓冲区管理单元访问不同的RAM。
3、 SATA3.1:SATA 控制器是一种高性能双端口主机控制器,具有 AHCI 兼容的命令层,该命令层对使用端口乘法器的系统来说,具有支持基于本地命令队列和帧信息结构(FIS)交换的高级功能。SATA使用 ATA/ATAPI 命令集,但是通过不同的导线可以实现与 SATA 第 1 代、第 2 代或第 3 代相对应的 1.5、3.0 或 6.0 Gb/sec 的速率进行串行通信。串行数据采用 8B/10B 编码,确保数据模式中有足够的转换以确保直流平衡(这里的转换指数据的 0/1 转换,关于直流平衡的知识大家可以自行了解或者看我们 HDMI 相关的视频,其中有涉及),并使时钟数据恢复电路能够从输入数据模式中提取时钟。
4、 PCIe 1.0/2.0 控制器:MPSoC 集成了一个 PCIe 通信控制器,用于实现 PCIe 的通信,它包含 AXI-PCIe桥和 DMA 组件,AXI-PCIe 桥主要是为 PCIe 和 AXI 提供高性能桥接。

5、 PS-GTR 收发器:千兆 GTR 收发器为串行输入输出单元(SIOU)的外围设备、媒体访问控制器(mac)以及它们的高速通信链路提供专用的 I/O。Zynq UltraScale+ MPSoC 共有四个可编程高速收发器,可以支持数据速率高达 6gb /s 的子层协议。

7)普通外设控制器

Zynq UltraScale+ MPSoC 的 PS 端除了集成的高速通信外设之外,还有一些普通的低速外设,其中包括GigE、USB2.0、CAN、UART、SPI、Quad SPI NOR、NAND 以及 SD/eMMC 等外设控制器。

8)PS-PL AXI 接口

MPSoC 将高性能 ARM Cotex-A 系列处理器与高性能 FPGA 在单芯片内紧密结合,为设计带来了如减小体积和功耗、降低设计风险,增加设计灵活性等诸多优点。在将不同工艺特征的处理器与 FPGA 融合在一个芯片上之后,片内处理器与 FPGA 之间的互联通路就成了 MPSoC 芯片设计的重中之重。如果 Cotex-A53与 FPGA 之间的数据交互成为瓶颈,那么处理器与 FPGA 结合的性能优势就不能发挥出来。
Xilinx 从 Spartan-6 和 Virtex-6 系列开始使用 AXI 协议来连接 IP 核。在 7 系列、Zynq-7000 和 Zynq UltraScale+ MPSoC 器件中,Xilinx 在 IP 核中继续使用 AXI 协议。AXI 的英文全称是 Advanced eXtensible Interface,即高级可扩展接口,它是 ARM 公司所提出的 AMBA(Advanced Microcontroller Bus Architecture)协议的一部分。

3 MPSoC 芯片命名规则

Zynq UltraScale+ MPSoC 产品命名规则如下图所示:

以 ZU+系列“XCZU4EV-SFVC784-1-I”为例,“XC”是“Xilinx 公司”;“ZU”是芯片系列是 Zynq
UltraScale+;“4”是价值索引(Value Index),该数值越大对应芯片内部资源越丰富,价值越高;“E”是
处理器类型,“E”代表四核 APU,双核 RPU 以及一个 GPU;“V”是引擎类型,V 代表视频解码器类型;
“sfvc784”芯片封装信息,“SFVC”是芯片制造工艺信息,“784”是芯片封装引脚计数(Package Pin Count);
“-1”是速度等级(Speed Grade);“-I”是温度等级(Temperature Grade),温度等级有两种标准,分别
是“E”与“I”。
E:扩展级,表示芯片可以工作在 0°C 到+100°C;
I:工业级,表示芯片可以工作在-40°C 到+100°C。



FPGA开源工作室 知识,创新,创艺,FPGA,matlab,opencv,数字图像,数字信号,数字世界。传递有用的知识,传递创艺的作品。FPGA开源工作室欢迎大家的关注。
评论 (0)
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 37浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 35浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 43浏览
  •   电磁干扰测试系统:电子设备电磁兼容性保障利器   北京华盛恒辉电磁干扰测试系统作为评估电子设备在电磁环境中电磁兼容性(EMC)的关键工具,主要用于检测与分析设备在电磁干扰环境下的性能表现,确保其符合相关标准,能够在实际应用中稳定运行。   应用案例   目前,已有多个电磁干扰测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰测试系统。这些成功案例为电磁干扰测试系统的推广和应用提供了有力支持。   系统组成   电磁干扰测试系统一般由以下核心部分构成:  
    华盛恒辉l58ll334744 2025-04-14 10:40 21浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 33浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 30浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 39浏览
  •  亥姆霍兹线圈的制造材料选择需兼顾导电性、绝缘性、机械强度及磁场性能,具体分类如下:一、‌导线材料1、‌高纯度铜线:‌作为线圈绕制的核心材料,铜因其you异的导电性(电阻率低)和热稳定性成为shou选。漆包铜线通过表面绝缘漆层实现匝间绝缘,避免短路‌。2、‌其他导电材料‌ 铝线等材料可用于特定场景(如轻量化需求),但导电性和抗氧化性较铜略逊二、‌磁源材料‌1、‌永磁体‌如钕铁硼(NdFeB)或铁氧体,适用于无需外部电源的静态磁场生成,但磁场强度有限。2、‌电磁铁‌通过电流控制磁场强度,
    锦正茂科技 2025-04-14 10:22 19浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 52浏览
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 41浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦