C语言编程技巧——表驱动法

李肖遥 2024-06-25 22:10
    关注、星标公众号,直达精彩内容


1 概念提出

所谓表驱动法(Table-Driven Approach)简而言之就是用查表的方法获取数据。此处的“表”通常为数组,但可视为数据库的一种体现。

根据字典中的部首检字表查找读音未知的汉字就是典型的表驱动法,即以每个字的字形为依据,计算出一个索引值,并映射到对应的页数。相比一页一页地顺序翻字典查字,部首检字法效率极高。

具体到编程方面,在数据不多时可用逻辑判断语句(if…else或switch…case)来获取值;但随着数据的增多,逻辑语句会越来越长,此时表驱动法的优势就开始显现。

例如,用36进制(A表示10,B表示11,…)表示更大的数字,逻辑判断语句如下:

if(ucNum < 10)
{
ucNumChar = ConvertToChar(ucNum);
}
elseif(ucNum == 10)
{
ucNumChar = 'A';
}
elseif(ucNum == 11)
{
ucNumChar = 'B';
}
elseif(ucNum == 12)
{
ucNumChar = 'C';
}
//... ...
elseif(ucNum == 35)
{
ucNumChar = 'Z';
}

当然也可以用switch…case结构,但实现都很冗长。而用表驱动法(将numChar存入数组)则非常直观和简洁。如:

CHAR aNumChars[] = {'0', '1', '2', /*3~9*/'A', 'B', 'C', /*D~Y*/'Z'};
CHAR ucNumChar = aNumChars[ucNum % sizeof(aNumChars)];

像这样直接将变量当作下数组下标来读取数值的方法就是直接查表法。

注意,如果熟悉字符串操作,则上述写法可以更简洁:

CHAR ucNumChar = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[ucNum];

使用表驱动法时需要关注两个问题:一是如何查表,从表中读取正确的数据;二是表里存放什么,如数值或函数指针。前者参见1.1节“查表方式”内容,后者参见1.2节“实战示例”内容。

1.1 查表方式

常用的查表方式有直接查找、索引查找和分段查找等。

1.1.1 直接查找

即直接通过数组下标获取到数据。如果熟悉哈希表的话,可以很容易看出这种查表方式就是哈希表的直接访问法。

如获取星期名称,逻辑判断语句如下:

if(0 == ucDay)
{
pszDayName = "Sunday";
}
elseif(1 == ucDay)
{
pszDayName = "Monday";
}
//... ...
elseif(6 == ucDay)
{
pszDayName = "Saturday";
}

而实现同样的功能,可将这些数据存储到一个表里:

CHAR *paNumChars[] = {"Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",  "Saturday"};
CHAR *pszDayName = paNumChars[ucDay];

类似哈希表特性,表驱动法适用于无需有序遍历数据,且数据量大小可提前预测的情况。

对于过于复杂和庞大的判断,可将数据存为文件,需要时加载文件初始化数组,从而在不修改程序的情况下调整里面的数值。

有时,访问之前需要先进行一次键值转换。如表驱动法表示端口忙闲时,需将槽位端口号映射为全局编号。所生成的端口数目大小的数组,其下标对应全局端口编号,元素值表示相应端口的忙闲状态。

1.1.2 索引查找

有时通过一次键值转换,依然无法把数据(如英文单词等)转为键值。此时可将转换的对应关系写到一个索引表里,即索引访问。

如现有100件商品,4位编号,范围从0000到9999。此时只需要申请一个长度为100的数组,且对应2位键值。但将4位的编号转换为2位的键值,可能过于复杂或没有规律,最合适的方法是建立一个保存该转换关系的索引表。采用索引访问既节省内存,又方便维护。比如索引A表示通过名称访问,索引B表示通过编号访问。

1.1.3 分段查找

通过确定数据所处的范围确定分类(下标)。有的数据可分成若干区间,即具有阶梯性,如分数等级。此时可将每个区间的上限(或下限)存到一个表中,将对应的值存到另一表中,通过第一个表确定所处的区段,再由区段下标在第二个表里读取相应数值。注意要留意端点,可用二分法查找,另外可考虑通过索引方法来代替。

如根据分数查绩效等级:

#define MAX_GRADE_LEVEL   (INT8U)5
DOUBLE aRangeLimit[MAX_GRADE_LEVEL] = {50.0, 60.0, 70.0, 80.0, 100.0};
CHAR *paGrades[MAX_GRADE_LEVEL] = {"Fail", "Pass", "Credit", "Distinction", "High Distinction"};

static CHAR* EvaluateGrade(DOUBLE dScore)
{
INT8U ucLevel = 0;
for(; ucLevel < MAX_GRADE_LEVEL; ucLevel++)
{
if(dScore < aRangeLimit[ucLevel])
return paGrades[ucLevel];
}
return paGrades[0];
}

上述两张表(数组)也可合并为一张表(结构体数组),如下所示:

typedefstruct{
DOUBLE aRangeLimit;
CHAR *pszGrade;
}T_GRADE_MAP;

T_GRADE_MAP gGradeMap[MAX_GRADE_LEVEL] = {
{50.0, "Fail"},
{60.0, "Pass"},
{70.0, "Credit"},
{80.0, "Distinction"},
{100.0, "High Distinction"}
};

static CHAR* EvaluateGrade(DOUBLE dScore)
{
INT8U ucLevel = 0;
for(; ucLevel < MAX_GRADE_LEVEL; ucLevel++)
{
if(dScore < gGradeMap[ucLevel].aRangeLimit)
return gGradeMap[ucLevel].pszGrade;
}
return gGradeMap[0].pszGrade;
}

该表结构已具备的数据库的雏形,并可扩展支持更为复杂的数据。其查表方式通常为索引查找,偶尔也为分段查找;当索引具有规律性(如连续整数)时,退化为直接查找。

使用分段查找法时应注意边界,将每一分段范围的上界值都考虑在内。找出所有不在最高一级范围内的值,然后把剩下的值全部归入最高一级中。有时需要人为地为最高一级范围添加一个上界。

同时应小心不要错误地用“<”来代替“<=”。要保证循环在找出属于最高一级范围内的值后恰当地结束,同时也要保证恰当处理范围边界。

1.2 实战示例

本节多数示例取自实际项目。表形式为一维数组、二维数组和结构体数组;表内容有数据、字符串和函数指针。基于表驱动的思想,表形式和表内容可衍生出丰富的组合。

1.2.1 字符统计

问题:统计用户输入的一串数字中每个数字出现的次数。

普通解法主体代码如下:

INT32U aDigitCharNum[10] = {0}; /* 输入字符串中各数字字符出现的次数 */
INT32U dwStrLen = strlen(szDigits);

INT32U dwStrIdx = 0;
for(; dwStrIdx < dwStrLen; dwStrIdx++)
{
switch(szDigits[dwStrIdx])
{
case'1':
aDigitCharNum[0]++;
break;
case'2':
aDigitCharNum[1]++;
break;
//... ...
case'9':
aDigitCharNum[8]++;
break;
}
}

这种解法的缺点显而易见,既不美观也不灵活。其问题关键在于未将数字字符与数组aDigitCharNum下标直接关联起来。

以下示出更简洁的实现方式:

for(; dwStrIdx < dwStrLen; dwStrIdx++)
{
aDigitCharNum[szDigits[dwStrIdx] - '0']++;
}

上述实现考虑到0也为数字字符。该解法也可扩展至统计所有ASCII可见字符。

1.2.2 月天校验

问题:对给定年份和月份的天数进行校验(需区分平年和闰年)。

普通解法主体代码如下:

switch(OnuTime.Month)
{
case1:
case3:
case5:
case7:
case8:
case10:
case12:
if(OnuTime.Day>31 || OnuTime.Day<1)
{
CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~31)!!!\n", OnuTime.Day);
retcode = S_ERROR;
}
break;
case2:
if(((OnuTime.Year%4 == 0) && (OnuTime.Year%100 != 0)) || (OnuTime.Year%400 == 0))
{
if(OnuTime.Day>29 || OnuTime.Day<1)
{
CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~29)!!!\n", OnuTime.Day);
retcode = S_ERROR;
}
}
else
{
if(OnuTime.Day>28 || OnuTime.Day<1)
{
CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~28)!!!\n", OnuTime.Day);
retcode = S_ERROR;
}
}
break;
case4:
case6:
case9:
case11:
if(OnuTime.Day>30 || OnuTime.Day<1)
{
CtcOamLog(FUNCTION_Pon,"Don't support this Day: %d(1~30)!!!\n", OnuTime.Day);
retcode = S_ERROR;
}
break;
default:
CtcOamLog(FUNCTION_Pon,"Don't support this Month: %d(1~12)!!!\n", OnuTime.Month);
retcode = S_ERROR;
break;
}

以下示出更简洁的实现方式:

#define MONTH_OF_YEAR 12    /* 一年中的月份数 */

/* 闰年:能被4整除且不能被100整除,或能被400整除 */
#define IS_LEAP_YEAR(year) ((((year) % 4 == 0) && ((year) % 100 != 0)) || ((year) % 400 == 0))

/* 平年中的各月天数,下标对应月份 */
INT8U aDayOfCommonMonth[MONTH_OF_YEAR] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

INT8U ucMaxDay = 0;
if((OnuTime.Month == 2) && (IS_LEAP_YEAR(OnuTime.Year)))
ucMaxDay = aDayOfCommonMonth[1] + 1;
else
ucMaxDay = aDayOfCommonMonth[OnuTime.Month-1];

if((OnuTime.Day < 1) || (OnuTime.Day > ucMaxDay)
{
CtcOamLog(FUNCTION_Pon,"Month %d doesn't have this Day: %d(1~%d)!!!\n",
OnuTime.Month, OnuTime.Day, ucMaxDay);
retcode = S_ERROR;
}

1.2.3 名称构造

问题:根据WAN接口承载的业务类型(Bitmap)构造业务类型名称字符串。

普通解法主体代码如下:

void Sub_SetServerType(INT8U *ServerType, INT16U wan_servertype)
{
if ((wan_servertype & 0x0001) == 0x0001)
{
strcat(ServerType, "_INTERNET");
}
if ((wan_servertype & 0x0002) == 0x0002)
{
strcat(ServerType, "_TR069");
}
if ((wan_servertype & 0x0004) == 0x0004)
{
strcat(ServerType, "_VOIP");
}
if ((wan_servertype & 0x0008) == 0x0008)
{
strcat(ServerType, "_OTHER");
}
}

以下示出C语言中更简洁的实现方式:

#define  GET_BIT(var, bit)   (((var) >> (bit)) & 0x1)    /* 获取var变量第bit位,编号从右至左 */
const CHAR* paSvrNames[] = {"_INTERNET", "_TR069", "_VOIP", "_OTHER"};
const INT8U ucSvrNameNum = sizeof(paSvrNames) / sizeof(paSvrNames[0]);

VOID SetServerType(CHAR *pszSvrType, INT16U wSvrType)
{
INT8U ucIdx = 0;
for(; ucIdx < ucSvrNameNum; ucIdx++)
{
if(1 == GET_BIT(wSvrType, ucIdx))
strcat(pszSvrType, paSvrNames[ucIdx]);
}
}

新的实现将数据和逻辑分离,维护起来非常方便。只要逻辑(规则)不变,则唯一可能的改动就是数据(paSvrNames)。

1.2.4 值名解析

问题:根据枚举变量取值输出其对应的字符串,如PORT_FE(1)输出“Fe”。

//值名映射表结构体定义,用于数值解析器
typedefstruct{
INT32U dwElem; //待解析数值,通常为枚举变量
CHAR* pszName; //指向数值所对应解析名字符串的指针
}T_NAME_PARSER;

/******************************************************************************
* 函数名称: NameParser
* 功能说明: 数值解析器,将给定数值转换为对应的具名字符串
* 输入参数: VOID *pvMap :值名映射表数组,含T_NAME_PARSER结构体类型元素
VOID指针允许用户在保持成员数目和类型不变的前提下,
定制更有意义的结构体名和/或成员名。
INT32U dwEntryNum :值名映射表数组条目数
INT32U dwElem :待解析数值,通常为枚举变量
INT8U* pszDefName :缺省具名字符串指针,可为空
* 输出参数: NA
* 返回值 : INT8U *: 数值所对应的具名字符串
当无法解析给定数值时,若pszDefName为空,则返回数值对应的16进制格式
字符串;否则返回pszDefName。
******************************************************************************/

INT8U *NameParser(VOID *pvMap, INT32U dwEntryNum, INT32U dwElem, INT8U* pszDefName)
{
CHECK_SINGLE_POINTER(pvMap, "NullPoniter");

INT32U dwEntryIdx = 0;
for(dwEntryIdx = 0; dwEntryIdx < dwEntryNum; dwEntryIdx++)
{
T_NAME_PARSER *ptNameParser = (T_NAME_PARSER *)pvMap;
if(dwElem == ptNameParser->dwElem)
{
return ptNameParser->pszName;
}
//ANSI标准禁止对void指针进行算法操作;GNU标准则指定void*算法操作与char*一致。
//若考虑移植性,可将pvMap类型改为INT8U*,或定义INT8U*局部变量指向pvMap。
pvMap += sizeof(T_NAME_PARSER);
}

if(NULL != pszDefName)
{
return pszDefName;
}
else
{
static INT8U szName[12] = {0}; //Max:"0xFFFFFFFF"
sprintf(szName, "0x%X", dwElem);
return szName;
}
}

以下给出NameParser的简单应用示例:

//UNI端口类型值名映射表结构体定义
typedefstruct{
INT32U dwPortType;
INT8U* pszPortName;
}T_PORT_NAME;
//UNI端口类型解析器
T_PORT_NAME gUniNameMap[] = {
{1, "Fe"},
{3, "Pots"},
{99, "Vuni"}
};
const INT32U UNI_NAM_MAP_NUM = (INT32U)(sizeof(gUniNameMap)/sizeof(T_PORT_NAME));
VOID NameParserTest(VOID)
{
INT8U ucTestIndex = 1;

printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("Unknown", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0, "Unknown")) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("DefName", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0, "DefName")) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("Fe", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 1, "Unknown")) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("Pots", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 3, "Unknown")) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("Vuni", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 99, NULL)) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("Unknown", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 255, "Unknown")) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("0xABCD", NameParser(gUniNameMap, UNI_NAM_MAP_NUM, 0xABCD, NULL)) ? "ERROR" : "OK");
printf("[%s] Result: %s!\n", __FUNCTION__, ucTestIndex++,
strcmp("NullPoniter", NameParser(NULL, UNI_NAM_MAP_NUM, 0xABCD, NULL)) ? "ERROR" : "OK");
}

gUniNameMap在实际项目中有十余个条目,若采用逻辑链实现将非常冗长。

1.2.5 取值映射

问题:不同模块间同一参数枚举值取值可能有所差异,需要适配。

此处不再给出普通的switch…case或if…else if…else结构,而直接示出以下表驱动实现:

typedefstruct{
PORTSTATE loopMEState;
PORTSTATE loopMIBState;
}LOOPMAPSTRUCT;

static LOOPMAPSTRUCT s_CesLoop[] = {
{NO_LOOP, e_ds1_looptype_noloop},
{PAYLOAD_LOOP, e_ds1_looptype_PayloadLoop},
{LINE_LOOP, e_ds1_looptype_LineLoop},
{PON_LOOP, e_ds1_looptype_OtherLoop},
{CES_LOOP, e_ds1_looptype_InwardLoop}};

PORTSTATE ConvertLoopMEStateToMIBState(PORTSTATE vPortState)
{
INT32U num = 0, ii;

num = ARRAY_NUM(s_CesLoop);
for(ii = 0; ii < num; ii++)
{
if(vPortState == s_CesLoop[ii].loopMEState)
return s_CesLoop[ii].loopMIBState;
}
return e_ds1_looptype_noloop;
}

相应地,从loopMIBState映射到loopMEState需要定义一个ConvertLoopMIBStateToMEState函数。更进一步,所有类似的一对一映射关系都必须如上的映射(转换)函数,相当繁琐。

事实上,从抽象层面看,该映射关系非常简单。提取共性后定义带参数宏,如下所示:

/**********************************************************
* 功能描述:进行二维数组映射表的一对一映射,用于参数适配
* 参数说明:map -- 二维数组映射表
elemSrc -- 映射源,即待映射的元素值
elemDest -- 映射源对应的映射结果
direction -- 映射方向字节,表示从数组哪列映射至哪列。
高4位对应映射源列,低4位对应映射结果列。
defaultVal -- 映射失败时置映射结果为缺省值
* 示例: ARRAY_MAPPER(gCesLoopMap, 3, ucLoop, 0x10, NO_LOOP);
则ucLoop = 2(LINE_LOOP)
**********************************************************/

#define ARRAY_MAPPER(map, elemSrc, elemDest, direction, defaultVal) do{\
INT8U ucMapIdx = 0, ucMapNum = 0; \
ucMapNum = sizeof(map)/sizeof(map[0]); \
for(ucMapIdx = 0; ucMapIdx < ucMapNum; ucMapIdx++) \
{ \
if((elemSrc) == map[ucMapIdx][((direction)&0xF0)>>4]) \
{ \
elemDest = map[ucMapIdx][(direction)&0x0F]; \
break; \
} \
} \
if(ucMapIdx == ucMapNum) \
{ \
elemDest = (defaultVal); \
} \
}while(0)

参数取值转换时直接调用统一的映射器宏,如下:

static INT8U gCesLoopMap[][2] = {
{NO_LOOP, e_ds1_looptype_noloop},
{PAYLOAD_LOOP, e_ds1_looptype_PayloadLoop},
{LINE_LOOP, e_ds1_looptype_LineLoop},
{PON_LOOP, e_ds1_looptype_OtherLoop},
{CES_LOOP, e_ds1_looptype_InwardLoop}};

ARRAY_MAPPER(gCesLoopMap, tPara.dwParaVal[0], dwLoopConf, 0x01, e_ds1_looptype_noloop);

另举一例:

#define  CES_DEFAULT_JITTERBUF        (INT32U)2000   /* 默认jitterbuf为2000us,而1帧=125us */
#define CES_JITTERBUF_STEP (INT32U)125 /* jitterbuf步长为125us,即1帧 */
#define CES_DEFAULT_QUEUESIZE (INT32U)5
#define CES_DEFAULT_MAX_QUEUESIZE (INT32U)7

#define ARRAY_NUM(array) (sizeof(array) / sizeof((array)[0])) /* 数组元素个数 */
typedefstruct{
INT32U dwJitterBuffer;
INT32U dwFramePerPkt;
INT32U dwQueueSize;
}QUEUE_SIZE_MAP;
/* gCesQueueSizeMap也可以(JitterBuffer / FramePerPkt)值为索引,更加紧凑 */
static QUEUE_SIZE_MAP gCesQueueSizeMap[]= {
{1,1,1}, {1,2,1}, {2,1,2}, {2,2,1},
{3,1,3}, {3,2,1}, {4,1,3}, {4,2,1},
{5,1,4}, {5,2,3}, {6,1,4}, {6,2,3},
{7,1,4}, {7,2,3}, {8,1,4}, {8,2,3},
{9,1,5}, {9,2,4}, {10,1,5}, {10,2,4},
{11,1,5}, {11,2,4}, {12,1,5}, {12,2,4},
{13,1,5}, {13,2,4}, {14,1,5}, {14,2,4},
{15,1,5}, {15,2,4}, {16,1,5}, {16,2,4},
{17,1,6}, {17,2,5}, {18,1,6}, {18,2,5},
{19,1,6}, {19,2,5}, {20,1,6}, {20,2,5},
{21,1,6}, {21,2,5}, {22,1,6}, {22,2,5},
{23,1,6}, {23,2,5}, {24,1,6}, {24,2,5},
{25,1,6}, {25,2,5}, {26,1,6}, {26,2,5},
{27,1,6}, {27,2,5}, {28,1,6}, {28,2,5},
{29,1,6}, {29,2,5}, {30,1,6}, {30,2,5},
{31,1,6}, {31,2,5}, {32,1,6}, {32,2,5}};
/**********************************************************
* 函数名称: CalcQueueSize
* 功能描述: 根据JitterBuffer和FramePerPkt计算QueueSize
* 注意事项: 配置的最大缓存深度
* = 2 * JitterBuffer / FramePerPkt
* = 2 * N Packet = 2 ^ QueueSize
* JitterBuffer为125us帧速率的倍数,
* FramePerPkt为每个分组的帧数,
* QueueSize向上取整,最大为7。
**********************************************************/

INT32U CalcQueueSize(INT32U dwJitterBuffer, INT32U dwFramePerPkt)
{
INT8U ucIdx = 0, ucNum = 0;

//本函数暂时仅考虑E1
ucNum = ARRAY_NUM(gCesQueueSizeMap);
for(ucIdx = 0; ucIdx < ucNum; ucIdx++)
{
if((dwJitterBuffer == gCesQueueSizeMap[ucIdx].dwJitterBuffer) &&
(dwFramePerPkt == gCesQueueSizeMap[ucIdx].dwFramePerPkt))
{
return gCesQueueSizeMap[ucIdx].dwQueueSize;
}
}

return CES_DEFAULT_MAX_QUEUESIZE;
}

1.2.6 版本控制

问题:控制OLT与ONU之间的版本协商。ONU本地设置三比特控制字,其中bit2(MSB)~bit0(LSB)分别对应0x21、0x30和0xAA版本号;且bitX为0表示上报对应版本号,bitX为1表示不上报对应版本号。其他版本号如0x20、0x13和0x1必须上报,即不受控制。

最初的实现采用if…else if…else结构,代码非常冗长,如下:

pstSendTlv->ucLength = 0x1f;
if (gOamCtrlCode == 0)
{
vosMemCpy(pstSendTlv->aucVersionList, ctc_oui, 3);
pstSendTlv->aucVersionList[3] = 0x30;
vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3);
pstSendTlv->aucVersionList[7] = 0x21;
vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3);
pstSendTlv->aucVersionList[11] = 0x20;
vosMemCpy(&(pstSendTlv->aucVersionList[12]), ctc_oui, 3);
pstSendTlv->aucVersionList[15] = 0x13;
vosMemCpy(&(pstSendTlv->aucVersionList[16]), ctc_oui, 3);
pstSendTlv->aucVersionList[19] = 0x01;
vosMemCpy(&(pstSendTlv->aucVersionList[20]), ctc_oui, 3);
pstSendTlv->aucVersionList[23] = 0xaa;
}
elseif (gOamCtrlCode == 1)
{
vosMemCpy(pstSendTlv->aucVersionList, ctc_oui, 3);
pstSendTlv->aucVersionList[3] = 0x30;
vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3);
pstSendTlv->aucVersionList[7] = 0x21;
vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3);
pstSendTlv->aucVersionList[11] = 0x20;
vosMemCpy(&(pstSendTlv->aucVersionList[12]), ctc_oui, 3);
pstSendTlv->aucVersionList[15] = 0x13;
vosMemCpy(&(pstSendTlv->aucVersionList[16]), ctc_oui, 3);
pstSendTlv->aucVersionList[19] = 0x01;
}
//此处省略gOamCtrlCode == 2~6的处理代码
elseif (gOamCtrlCode == 7)
{
vosMemCpy(&(pstSendTlv->aucVersionList), ctc_oui, 3);
pstSendTlv->aucVersionList[3] = 0x20;
vosMemCpy(&(pstSendTlv->aucVersionList[4]), ctc_oui, 3);
pstSendTlv->aucVersionList[7] = 0x13;
vosMemCpy(&(pstSendTlv->aucVersionList[8]), ctc_oui, 3);
pstSendTlv->aucVersionList[11] = 0x01;
}

以下示出C语言中更简洁的实现方式(基于二维数组):

/**********************************************************************
* 版本控制字数组定义
* gOamCtrlCode: Bitmap控制字。Bit-X为0时上报对应版本,Bit-X为1时屏蔽对应版本。
* CTRL_VERS_NUM: 可控版本个数。
* CTRL_CODE_NUM: 控制字个数。与CTRL_VERS_NUM有关。
* gOamVerCtrlMap: 版本控制字数组。行对应控制字,列对应可控版本。
元素值为0时不上报对应版本,元素值非0时上报该元素值。
* Note: 该数组旨在实现“数据与控制隔离”。后续若要新增可控版本,只需修改
-- CTRL_VERS_NUM
-- gOamVerCtrlMap新增行(控制字)
-- gOamVerCtrlMap新增列(可控版本)
**********************************************************************/

#define CTRL_VERS_NUM 3
#define CTRL_CODE_NUM (1<
u8_t gOamVerCtrlMap[CTRL_CODE_NUM][CTRL_VERS_NUM] = {
/* Ver21 Ver30 VerAA */
{0x21, 0x30, 0xaa}, /*gOamCtrlCode = 0*/
{0x21, 0x30, 0 }, /*gOamCtrlCode = 1*/
{0x21, 0, 0xaa}, /*gOamCtrlCode = 2*/
{0x21, 0, 0 }, /*gOamCtrlCode = 3*/
{ 0, 0x30, 0xaa}, /*gOamCtrlCode = 4*/
{ 0, 0x30, 0 }, /*gOamCtrlCode = 5*/
{ 0, 0, 0xaa}, /*gOamCtrlCode = 6*/
{ 0, 0, 0 } /*gOamCtrlCode = 7*/
};
#define INFO_TYPE_VERS_LEN 7 /* InfoType + Length + OUI + ExtSupport + Version */

u8_t verIdx = 0;
u8_t index = 0;
for(verIdx = 0; verIdx < CTRL_VERS_NUM; verIdx++)
{
if(gOamVerCtrlMap[gOamCtrlCode][verIdx] != 0)
{
vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3);
index += 3;
pstSendTlv->aucVersionList[index++] = gOamVerCtrlMap[gOamCtrlCode][verIdx];
}
}
vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3);
index += 3;
pstSendTlv->aucVersionList[index++] = 0x20;
vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3);
index += 3;
pstSendTlv->aucVersionList[index++] = 0x13;
vosMemCpy(&pstSendTlv->aucVersionList[index], ctc_oui, 3);
index += 3;
pstSendTlv->aucVersionList[index++] = 0x01;

pstSendTlv->ucLength = INFO_TYPE_VERS_LEN + index;

1.2.7 消息处理

问题:终端输入不同的打印命令,调用相应的打印函数,以控制不同级别的打印。

这是一段消息(事件)驱动程序。本模块接收其他模块(如串口驱动)发送的消息,根据消息中的打印级别字符串和开关模式,调用不同函数进行处理。常见的实现方法如下:

void logall(void)
{
g_log_control[0] = 0xFFFFFFFF;
}

void noanylog(void)
{
g_log_control[0] = 0;
}

void logOam(void)
{
g_log_control[0] |= (0x01 << FUNCTION_Oam);
}
void nologOam(void)
{
g_log_control[0] &= ~(0x01 << FUNCTION_Oam);
}
//... ...
void logExec(char *name, INT8U enable)
{
CtcOamLog(FUNCTION_Oam,"log %s %d\n",name,enable);
if (enable == 1) /*log*/
{
if (strcasecmp(name,"all") == 0) { /*字符串比较,不区分大小写*/
logall();
} elseif (strcasecmp(name,"oam") == 0) {
logOam();
} elseif (strcasecmp(name,"pon") == 0) {
logPon();
//... ...
} elseif (strcasecmp(name,"version") == 0) {
logVersion();
}
elseif (enable == 0) /*nolog*/
{
if (strcasecmp(name,"all") == 0) {
noanylog();
} elseif (strcasecmp(name,"oam") == 0) {
nologOam();
} elseif (strcasecmp(name,"pon") == 0) {
nologPon();
//... ...
} elseif (strcasecmp(name,"version") == 0) {
nologVersion();
}
else
{
printf("bad log para\n");
}
}

以下示出C语言中更简洁的实现方式:

typedefstruct{
OAM_LOG_OFF = (INT8U)0,
OAM_LOG_ON = (INT8U)1
}E_OAM_LOG_MODE;
typedef FUNC_STATUS (*OamLogHandler)(VOID);
typedefstruct{
CHAR *pszLogCls; /* 打印级别 */
E_OAM_LOG_MODE eLogMode; /* 打印模式 */
OamLogHandler fnLogHandler; /* 打印函数 */
}T_OAM_LOG_MAP;

T_OAM_LOG_MAP gOamLogMap[] = {
{"all", OAM_LOG_OFF, noanylog},
{"oam", OAM_LOG_OFF, nologOam},
//... ...
{"version", OAM_LOG_OFF, nologVersion},

{"all", OAM_LOG_ON, logall},
{"oam", OAM_LOG_ON, logOam},
//... ...
{"version", OAM_LOG_ON, logVersion}
};
INT32U gOamLogMapNum = sizeof(gOamLogMap) / sizeof(T_OAM_LOG_MAP);

VOID logExec(CHAR *pszName, INT8U ucSwitch)
{
INT8U ucIdx = 0;
for(; ucIdx < gOamLogMapNum; ucIdx++)
{
if((ucSwitch == gOamLogMap[ucIdx].eLogMode) &&
(!strcasecmp(pszName, gOamLogMap[ucIdx].pszLogCls));
{
gOamLogMap[ucIdx].fnLogHandler();
return;
}
}
if(ucIdx == gOamLogMapNum)
{
printf("Unknown LogClass(%s) or LogMode(%d)!\n", pszName, ucSwitch);
return;
}
}

这种表驱动消息处理实现的优点如下:

  • 增强可读性,消息如何处理从表中一目了然。

  • 增强可扩展性。更容易修改,要增加新的消息,只要修改数据即可,不需要修改流程。

  • 降低复杂度。通过把程序逻辑的复杂度转移到人类更容易处理的数据中来,从而达到控制复杂度的目标。

  • 主干清晰,代码重用。

    若各索引为顺序枚举值,则建立多维数组(每维对应一个索引),根据下标直接定位到处理函数,效率会更高。

    注意,考虑到本节实例中logOam/logPon或nologOam/nologPon等函数本质上是基于打印级别的比特操作,因此可进一步简化。以下例举其相似实现:

/* 日志控制类型定义 */
typedefenum
{
LOG_NORM = 0, /* 未分类日志,可用于通用日志 */
LOG_FRM, /* Frame,OMCI帧日志 */
LOG_PON, /* Pon,光链路相关日志 */
LOG_ETH, /* Ethernet,Layer2以太网日志 */
LOG_NET, /* Internet,Layer3网络日志 */
LOG_MULT, /* Multicast,组播日志 */
LOG_QOS, /* QOS,流量日志 */
LOG_CES, /* Ces,TDM电路仿真日志 */
LOG_VOIP, /* Voip,语音日志 */
LOG_ALM, /* Alarm,告警日志 */
LOG_PERF, /* Performance,性能统计日志 */
LOG_VER, /* Version,软件升级日志 */
LOG_XDSL, /* xDsl日志 */
LOG_DB, /* 数据库操作日志 */
//新日志类型在此处扩展,共支持32种日志类型
LOG_ALL = UINT_MAX /* 所有日志类型 */
}E_LOG_TYPE;

/*****************************************************************************
* 变量名称:gOmciLogCtrl
* 作用描述:OMCI日志控制字,BitMap格式(比特编号从LSB至MSB依次为Bit0->BitN)。
* Bit0~N分别对应E_LOG_TYPE各枚举值(除LOG_ALL外)。
* BitX为0时关闭日志类型对应的日志功能,BitX为1时则予以打开。
* 变量范围:该变量为四字节整型静态全局变量,即支持32种日志类型。
* 访问说明:通过GetOmciLogCtrl/SetOmciLogCtrl/OmciLogCtrl函数访问/设置控制字。
*****************************************************************************/

static INT32U gOmciLogCtrl = 0;

//日志类型字符串数组,下标为各字符串所对应的日志类型枚举值。
staticconst INT8U* paLogTypeName[] = {
"Norm", "Frame", "Pon", "Ethernet", "Internet",
"Multicast", "Qos", "Ces", "Voip", "Alarm",
"Performance", "Version", "Xdsl", "Db"
};
staticconst INT8U ucLogTypeNameNum = sizeof(paLogTypeName) / sizeof(paLogTypeName[0]);

static VOID SetGlobalLogCtrl(E_LOG_TYPE eLogType, INT8U ucLogSwitch)
{
if(LOG_ON == ucLogSwitch)
gOmciLogCtrl = LOG_ALL;
else
gOmciLogCtrl = 0;
}
static VOID SetSpecificLogCtrl(E_LOG_TYPE eLogType, INT8U ucLogSwitch)
{
if(LOG_ON == ucLogSwitch)
SET_BIT(gOmciLogCtrl, eLogType);
else
CLR_BIT(gOmciLogCtrl, eLogType);
}

VOID OmciLogCtrl(CHAR *pszLogType, INT8U ucLogSwitch)
{
if(0 == strncasecmp(pszLogType, "All", LOG_TYPE_CMP_LEN))
{
SetGlobalLogCtrl(LOG_ALL, ucLogSwitch);
return;
}

INT8U ucIdx = 0;
for(ucIdx = 0; ucIdx < ucLogTypeNameNum; ucIdx++)
{
if(0 == strncasecmp(pszLogType, paLogTypeName[ucIdx], LOG_TYPE_CMP_LEN))
{
SetSpecificLogCtrl(ucIdx, ucLogSwitch);
printf("LogType: %s, LogSwitch: %s\n", paLogTypeName[ucIdx],
(1==ucLogSwitch)?"On":"Off");
return;
}
}

OmciLogHelp();
}

2 编程思想

表驱动法属于数据驱动编程的一种,其核心思想在《Unix编程艺术》和《代码大全2》中均有阐述。两者均认为人类阅读复杂数据结构远比复杂的控制流程容易,即相对于程序逻辑,人类更擅长于处理数据。

本节将由Unix设计原则中的“分离原则”和“表示原则”展开。

2.1 分离原则:策略同机制分离,接口同引擎分离

机制即提供的功能;策略即如何使用功能。

策略的变化要远远快于机制的变化。将两者分离,可以使机制相对保持稳定,而同时支持策略的变化。

代码大全中提到“隔离变化”的概念,以及设计模式中提到的将易变化的部分和不易变化的部分分离也是这个思路。

2.2 表示原则:把知识叠入数据以求逻辑质朴而健壮

即使最简单的程序逻辑让人类来验证也很困难,但就算是很复杂的数据,对人类来说,还是相对容易推导和建模的。数据比编程逻辑更容易驾驭。在复杂数据和复杂代码中选择,宁可选择前者。更进一步,在设计中,应该主动将代码的复杂度转移到数据中去(参考“版本控制”)。

在“消息处理”示例中,每个消息处理的逻辑不变,但消息可能是变化的。将容易变化的消息和不容易变化的查找逻辑分离,即“隔离变化”。此外,该例也体现消息内部的处理逻辑(机制)和不同的消息处理(策略)分离。

数据驱动编程可以应用于:

  • 函数级设计,如本文示例。

  • 程序级设计,如用表驱动法实现状态机。

  • 系统级设计,如DSL。

注意,数据驱动编程不是全新的编程模型,只是一种设计思路,在Unix/Linux开源社区应用很多。数据驱动编程中,数据不但表示某个对象的状态,实际上还定义程序的流程,这点不同于面向对象设计中的数据“封装”。

转自:https://www.cnblogs.com/clover-toeic/p/3730362.html

版权声明:本文来源网络,免费传达知识,版权归原作者所有。如涉及作品版权问题,请联系我进行删除。

‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧  END  ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧

关注我的微信公众号,回复“星球”加入知识星球,有问必答。



点击“阅读原文”查看知识星球详情,欢迎点分享、收藏、点赞、在看。

李肖遥 公众号“技术让梦想更伟大”,作者:李肖遥,专注嵌入式,只推荐适合你的博文,干货,技术心得,与君共勉。
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 168浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦