光模块封装类型及技术参数

ittbank 2020-11-23 00:00

近年来,大数据、云计算、5G、物联网以及人工智能等应用市场快速发展,将要来临的无人驾驶应用市场,给数据流量带来了爆炸性增长,数据中心互联逐渐发展成为光通信的研究热点。



目前的数据中心已不再仅仅是一座或几座机房,而是一组数据中心集群。为实现各种互联网业务和应用市场的正常工作,要求数据中心之间协同运转。数据中心之间信息实时海量交互,这就产生了数据中心互联网络需求,光纤通信则成为了实现互联的必要手段。


与传统的电信接入网传输设备不同,数据中心互联要实现信息量更大、更密集的传输,就要要求交 换设备拥有更高速率、更低功耗,以及更加小型化。而决定这些性能是否能够实现的一个核心因素,则是光模块。


信息网络主要以光纤作为传输介质,但目前计算、分析还必须基于电信号,光模块是实现光电转换的核心器件。


光模块的核心组件由Transimitter(光发射次模块)/Receiver(光接收次模块)或Transceiver(光收发一体模块)、电芯片,另外还包括透镜、分路器、合束器等无源器件及外围电路组成。



常见的光模块封装模式有SFP、XFP、QSFP、CFP等。


数据中心通信光模块可按照连接类型分为三类:


(1)数据中心到用户,由访问云端进行浏览网页、收发电子邮件和视频流等终端用户行为产生;


(2)数据中心互联,主要用于数据复制、软件和系统升级;


(3)数据中心内部,主要用于信息的存储、生成和挖掘。根据思科预测,数据中心内部通信占数据中心通信70%以上的比例,数据中心建设的大发展,也就催生了高速光模块的发展。


数据流量持续增长,数据中心大型化、扁平化趋势推动光模块向两方面发展:

· 传输速率需求提升

· 数量需求增长



数据中心大型化趋势导致传输距离需求提升,多模光纤的传输距离受限于信号速率的提升,预计将逐渐被单模光纤代替。而光纤链路成本由光模块和光纤两部分组成,针对不同的距离,也有不同的适用方案。就数据中心通信所需的中长距离互联而言,有着诞生自MSA的两种革命性方案:


· PSM4(Parallel Single Mode 4 lanes)

· CWDM4(Coarse Wavelength Division Multiplexer 4 lanes)


其中,PSM4光纤使用量是CWDM4的4倍,当链路的距离较长时,CWDM4方案成本则相对较低。


如今,400G光模块的实现技术成为了业界关注的重点。400G光模块的主要作用是能够提高数据的吞吐量,能最大限度的提高数据中心的带宽与端口密度。其未来的趋势是实现宽增益、低噪声、小型化和集成化等性能,满足下一代无线网络与超大规模数据中心通信的应用需求。


目前的400G光模块中,主要使用的是8路53G NRZ或者4路106G PAM4(4 Pulse Amplitude Modulation, 4级脉冲幅度调制)信号调制的方式,来实现400G的信号传输。


模块封装方面,采用的则是OSFP或QSFP-DD,这两种封装形式都可以提供8路电信号接口。


相较来说,QSFP-DD封装尺寸更小,更适合数据中心应用;OSFP封装尺寸稍大一些,功耗更大,更适合电信应用。


光模块封装类型


光模块(optical transceiver)是光通信系统中重要的器件。前面我们也介绍了不同种类的光模块,今天来系统的介绍光模块封装类型的变化。



千兆光模块

GBIC(Gigabit Interface Converter) 光模块是第一个封装接口标准化的光模块。采用SC接口,可热插拔,可将千兆位的电信号转换为光信号,其在上世纪90年占据主流市场。



SFP(Small Factor Pluggable) 光模块是一种小型可插光模块,其体积较GBIC小一倍,在同样大小的面板上配置多出一倍以上的端口数量,多采用LC型光纤接口 。



10G光模块

10GbE(英文全称为10 Gigabit Ethernet)以太网标准得以通过,它规范了以 10Gbit/s 的速率来传输的以太网,传输距离为300m到40km。


X2光模块可直接放在电路板上,不需要开槽,适合高密度使用。



XFP(10 Gigabit Small Form-factor Pluggable)光模块,X在罗马数字中代表10传输速率9.953Gbps~10.3Gbps,双LC,可热插拔,包含了数字诊断功能。



SFP+光模块和SFP一样的外形,实现了10G的信号传输。SFP+将信号调制功能,串行/解串器、MAC、时钟和数据恢复(CDR),以及电子色散补偿(EDC)功能从模块移到主板卡上,实现高速率、小型化和低成本。



这几种万兆模块,出现的年代不同,尺寸从大到小,小的替代了大的,SFP+最终成为万兆光模块的主力。


25G/40G光模块


SFP28光模块基于SFP+的封装模式,传输速率25Gbps,适用于单个25GE接入端口,功耗低,端口密度较高,可节省网络部署成本,被广泛应用于25G以太网和100G以太网中。



QSFP(Quad Small Form-factor Pluggable)光模块是四通道小型可插拔光模块。它具有四个独立的全双工收发通道,用多通道并行的高密度的光模块替换单通道的SFP,而QSFP的体积只比标准的SFP模块大30%。这种4通道的可插拔接口传输速率达到了4x10Gbps。



100G光模块


CFP光模块 中的C代表100,主要针对的是100G及以上速率的应用,CFP封装模式主要包括CFP/CFP2/CFP4/CFP8,CFP后面的数字代表了更新换代,尺寸更紧密,速率更高。



CFP光模块 每路电接口速率定义为10Gb/s等级,通过4x10Gb/s和10x10Gb/s电接口实现40G和100G的模块速率。



CFP2光模块 的体积是CFP的1/2,它与CFP相似之处在于PCB上都设置了一个专用连接器,CFP2最高支持4x25G和8x25G速率。


CFP4光模块 比CFP2进一步缩小了尺寸,宽度是CFP2的一半,电接口支持单路10Gb/s和25Gb/s,通过4x10Gb/s和4x25Gb/s实现40G/100G的模块速率。



CXP光模块(12*Small Form-factor Pluggable) 尺寸比XFP光模块稍大,C代表100G,内置12个传输通道,每个通道以10Gb/s的速度运行,最高速率可达120G,主要用来满足数据中心高密度的需求,通常与并行多模光纤带一起使用,传输距离高达100米。



QSFP28光模块 的封装方式和QSFP+光模块一样,且都采用4个光纤通道来传输数据,不同的是,100G QSFP28光模块各个光纤通道的传输速率最高能达到28Gbps,主要用于100G传输应用。



QSFP28光模块工作时的功耗通常不超过3.5W,比起其他100G光模块6-24W的功耗要低得多。


200G/400G光模块


QSFP-DD(Quad Small Form Factor Pluggable-Double Density) Q指的是“Quad”,4路的意思,DD指的是“Double Density”。将QSFP的4通道增加了一排通道,变为了8通道(double density)。它可以与QSFP方案兼容,原先的QSFP28模块仍可以使用,只需再插入一个模块即可。



QSFP28支持4x25G速率,QSFP-DD支持8x25G速率,所以两者的结构唯一差异之处就在QSFP-DD的电口金手指数量是QSFP28的2倍。



OSFP(Octal Small Formfactor Pluggable) ,Octal代表八进制,表示这一光模块用8个56G通道来实现400GbE。尺寸略大于QSFP-DD,56GbE的信号是由25G的DML激光器在PAM4的调制下形成的。该标准为新的接口标准,与现有的光电接口不兼容。



CFP8光模块 是专门针对400G提出的封装形式,其尺寸与CFP2相当。电接口支持25Gb/s和50Gb/s的通道速率,通过16x25G或8x50电接口实现400G模块速率。



COBO(consortium for on board optics), 它旨在将所有光学组件放置在PCB板上,摆脱前面板接口密度的束缚。这一方案具有散热好和尺寸小的特点,但其不能热插拔、维修起来较困难。



以上是10G到400G光模块的封装模式


光模块技术参数简介


模块是用于交换机与设备之间传输的载体,是光纤通信系统中的核心器件。其主要作用是在发送端把电信号转换成光信号,通过光纤传送后,接收端把光信号转换成电信号。



光模块经过了多年的发展,其封装方式也有了极大的变化,GBIC、SFP、XFP、QSFP+、OSFP、QSFP28、QSFP-DD、COBO等都是光模块封装类型。


传输速率也从千兆、万兆、25G、40G、100G到200G、400G。



除了封装模式和传输速率,光模块还有哪些重要的技术参数呢?今天来简单介绍一下。


1 中心波长

中心波长的单位是nm,目前主要有以下3种:

• 850nm(多模MM),成本低但传输距离短,一般只能传输500m;

• 1310nm(单模SM),传输过程中损耗大但色散小,一般用于40km以内的传输;

• 1550nm(单模SM),传输过程中损耗小但色散大,一般用于40km以上的长距离传输,最远可以无中继直接传输120km。


2 传输距离

传输距离是指光信号无需中继放大可以直接传输的距离,分为短距、中距和长距三种。一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。



光模块可传输的距离主要受到损耗和色散两方面受限。


注意:

• 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。


• 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。


因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。


3 输出光功率


输出光功率指光模块发送端光源的输出光功率。单位为W或mW或dBm。其中W或mW为线性单位,dBm是一个表示功率绝对值的值(也可以认为是以1mW功率为基准的一个比值)。在通信中,我们通常使用dBm来表示光功率。


P(dBm)=10Log(P/1mW)


4 接受灵敏度


接受灵敏度指可以探测到的光强度,以dBm为单位。一般情况下,速率越高接收灵敏度越差,即最小接收光功率越大,对于光模块接收端器件的要求也越高。


5 激光器类型


• FP激光器:

FP激光器的谐振腔由镀膜的自然解理面形成的 ,只能实现静态单模工作。在高速调制或温度和电流变化时,会出现模式跳跃和谱线展宽。



• DFB激光器:

DFB即分布式反馈激光器,其不同之处是内置了布拉格光栅,属于侧面发射的半导体激光器。DFB激光器将布拉格光栅集成到激光器内部的有源层中(也就是增益介质中),在谐振腔内即形成选模结构,可以实现完全单模工作。



两种激光器,两者的半导体材料和谐振腔结构有所不同,DFB激光器的价格贵,多用于传输距离大于40km的光模块;而FP激光器便宜,一般用于传输距离在40km以内的光模块。


6 光模块接口类型


光模块接口类型主要有MPO/MTP、双芯LC、单芯LC和RJ-45接口。



‧  END  

ittbank 让电子库存因技术而改变的ITT模式电商平台。引领和适应市场,以共享经济理念的创客及工程师为核心、以免费开放用户生成的数据为基础,为其提供高性价比的应用解决方案和及时精准的供求信息,快速提高产品开发周期和生产直通率、提升电子器件的应用附加值。
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 86浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 89浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 97浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 75浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 59浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 53浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 93浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 118浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 107浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 118浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 66浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 91浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦