给NeRF开透视眼!稀疏视角下用X光进行三维重建,9类算法工具包全开源|CVPR2024

OpenCV学堂 2024-06-21 20:34



点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 新智元 授权


【导读】本文提出了SAX-NeRF框架,一种专为稀疏视角下X光三维重建设计的新型NeRF方法,通过Lineformer Transformer和MLG采样策略显著提升了新视角合成和CT重建的性能。研究者还建立了X3D数据集,并开源了代码和预训练模型,为X光三维重建领域的研究提供了宝贵的资源和工具。

众所周知,X 光由于有着十分强大的穿透力而被广泛地应用于医疗、安检、考古、生物、工业检测等场景的透射成像。


然而,X 光的辐射作用对人体是有害的,受试者与测试者都会或多或少地收到影响。为了减少 X 光对人体的伤害,人们开始研究稀疏视角下的 X 光重建从而降低在 X 光中的暴露时间。


这主要包含了两个子任务:


1. 新视角合成,即从一个被扫描物体的一些已拍摄的视角来合成出新的没有被拍摄过的视角下该物体的投影。


2. CT 重建,即从多视角的 X 光投影中恢复出密集的三维 CT 体辐射密度 (volume radiodensity)。


辐射密度刻画的是当 X 光穿透物体时,X 光被吸收或者阻挡的程度大小。如图 2 所示,自然光成像主要靠的是光线在物体表面的反射。


而 X 光成像主要依靠的是 X 光穿透物体后被吸收或阻挡。换句话说,自然光成像关注并捕获的是物体表面的信息如纹理颜色等,而 X 光成像关注的更多的是物体内部的结构和材质。


图1 自然光成像原理对比 X 光成像原理


也正是因为自然光成像和 X 光成像之间的显著差异,自然光下的 NeRF 方法以及对应的公式并不适用于 X 光。


针对 X 光的三维重建问题,本文提出了一种用于稀疏视角下 X 光三维重建的 NeRF 方法。具体而言,主要做两个任务。一是 X 光的新视角合成 (Novel View Synthesis, NVS),二是 CT 重建,可以简单理解为体密度的重建。


论文链接: https://arxiv.org/abs/2311.10959

代码链接: https://github.com/caiyuanhao1998/SAX-NeRF

演示视频:https://www.youtube.com/watch?v=oVVUaBY61eo

leaderboard: https://paperswithcode.com/dataset/x3d


X 光三维重建动态 demo

先给大家看一个在新视角合成任务上的性能对比图:

图2 我们的方法与 SOTA 方法在医学、生物、安检、工业场景上的新视角合成性能对比


目前所有的训练测试代码、预训练权重、训练日志、数据、测试结果均已开源。此外,我们已经在 paper with code 设置好了 leaderboard, 欢迎大家来提交结果。


我们将开源的 github repo 拓展成了一个支持 9 类算法的工具包方便大家的科研工作。除此之外,我还把数据可视化的代码,和造数据的代码也一起公开了,以方便有条件的可以接触到CT数据的朋友可以在自己搜集的数据上开展研究。


文中主要做出了以下四点贡献:


1. 提出了一套全新的能够同时做 X 光新视角合成与 CT 成像的 NeRF 框架,名为 SAX-NeRF。该框架的训练不需要用的 CT 作为监督信号,只使用 X 光片即可。


2. 设计了一种新的分段式 Transformer,名为 Lineformer,可以捕获成像物体在三维空间中的复杂的内部结构。据我们所知,我们的 Lineformer 是首个将 Transformer 应用于 X 光渲染的 Transformer。


3. 提出了一种新型的射线采样策略,名为 MLG sampling,可以从 X 光片上提取出局部和全局的信息。


4. 搜集了首个大规模的 X 光三维重建数据集,涵盖医疗、生物、安检、工业领域。同时,我们设计的算法在这个数据集上取得了当前最好效果,在 X 光新视角合成和 CT 重建两大任务上比之前的最好方法要高出 12.56 和 2.49 dB。


空间坐标系的转换


我们在圆形扫描轨迹锥形 X 光束扫描(circular cone-beam X-ray scanning)场景下研究三维重建问题。空间坐标系的变换关系如图 3 所示。


被扫描物体的中心 O 为世界坐标系的原点。扫描仪的中心 S 为相机坐标系的中心。探测器 D 的左上角为图像坐标系的原点。整个空间坐标系的变换遵循 OpenCV 三维视觉的标准。


图3 空间坐标系转换关系示意图


本文方法


NeRF 从自然光成像到 X 光成像


在自然光成像中,NeRF采用一个 MLP Θ 来拟合的是空间中点的位置 (𝑥,𝑦,𝑧) 和视角 (𝜃,𝜙) 到该点的颜色 (𝑅,𝐺,𝐵) 和体密度 (𝜎) 的隐式映射:



而在 X 光成像中,并不关注颜色信息,只需要重建出辐射密度  𝜌。


同时我们注意到辐射密度属性与观测的视角无关。因此,我们指出,X 光下的 NeRF 公式应当为:



其中的 Θ𝐿 表示我们 Lineformer 的可学习参数。根据 Beer-Lambert 规则,一条 X 光射线的强度会沿着它所穿过的物体的辐射密度的积分而呈指数型衰减。如下公式所示:



将公式 (3)中的积分离散化,同时将其中的 𝜌(𝑟(𝑡)) 用我们 Lineformer 预测的 𝜌𝑖 替代便可得到预测的 X 光强度,如公式(4)所示:



我们的训练监督目标是预测的 X 光强度与真实的 X 光强度之间的均方误差:



Lineformer — 分段式 Transformer


我们注意到 X 光的成像过程是沿着穿透物体被吸收或者阻挡,成像物体不同部分的结构和材质存在差异,因此 X 光被吸收的程度也不一致。


然而之前的 NeRF 类方法大都使用很常规的 MLP 网络平等地对待沿着射线上的采样点。如果直接采用 MLP 来拟合公式(3)的话,那 X 光成像的重要性质便被忽略了,难以取得很好的效果。


基于此,我们提出了一种新型的分段式 Transformer (Line Segment-based Transformer,简称 Lineformer)来拟合 X 光在穿透不同结构时的衰减。


我们的算法框架如图 4 所示。我们首先采用 MLP sampling 策略采样出一个 batch 的 X 光射线 𝑅 。


对每一条射线,我们采出一组三维点的位置 𝑃 。将 𝑃 通过一个哈希编码器 𝐻 得到点特征 𝐹。然后 𝐹 经过 4 个分段式注意力块(Line Segment-based Attention Block,简称为 LSAB)与两层全连接层便可得到这些点的辐射密度 𝐷

 。


图4 SAX-NeRF 的算法框架图


LSAB 中最核心的模块是分段式的多头自注意力机制(Line Segment-based Multi-head Self-Attention,LS-MSA),其结构如图 4 (c)所示。将输入的点特征记为 𝑋∈𝑅𝑁×𝐶 ,将其分为 M 段:



其中的 𝑋𝑖∈𝑅𝑁𝑀×𝐶 。然后 𝑋𝑖 会被线性地投影到 𝑄𝑖 、𝐾𝑖 、𝑉𝑖 :



然后将 𝑄𝑖 、 𝐾𝑖 、 𝑉𝑖 沿着通道维度均匀地分成 k 个头:



然后在每一个头内计算自相似注意力 𝐻𝑖𝑗 如下:



然后将计算结果拼接起来,通过一个全连接层后与一个位置编码 𝐸𝑖 相加后得到一段的输出:



将 M 段输出拼接起来便得到总的输出:



分析我们的 LS-MSA 计算复杂度如下:



与采样的点数 𝑁 呈线性相关。对比全局多头自注意力机制的计算复杂度:



与采样的点数 𝑁 呈二次相关。因此我们的方法计算量比常规的 Transformer 要小得多。


X 射线采样策略


由于 RGB 成像中信息普遍比较密集,即一张 RGB 图像中几乎每一个像素都传递信息。因此,RGB NeRF 在采射线时通常会使用随机的方式在图像上采集一批像素点,如图5 (a) 中的蓝色像素所示,每一个像素点对应一条射线。


然而这种射线采样的策略并不适用于 X 光图片,因为 X 光片有着较大的空间稀疏性。如果随机采样的话,可能有一些采样点不落在成像区域,如图 5 (a) 中的像素点 𝑝𝑏𝑔 。为了解决这个问题,我们设计了一种高效的射线


图5 简单随机采样 (a) 与我们的采样策略 (b) 的对比


采样策略,名为 MLG sampling,如图 (b) 所示。首先,我们用一个二值化的掩膜将成像区域分割出来。然后我们将整个图像分成互不重叠的小方块。


然后我们随机抽选 M 个完全落在成像区域的小方块,取出小方块内所有的像素对应的射线。在成像区域的其他位置(除开被选取的小方块外),我们还再继续抽取 N 个像素点对应的射线。


将两次抽取的射线组成一个 ray batch 用作训练。如此采样得到的射线首先全都穿透被扫描物体,捕获到被扫描物体的辐射密度信息。同时成块的区域还有着丰富的语义上下文信息以帮助三维重建。


实验结果


新视角合成


表1 新视角合成的定量实验结果对比


图6 新视角合成的视觉结果对比


新视角合成任务上的定量指标和视觉对比分别如表 1 和图 6 所示。我们的方法比之前最好方法还要高出 12.56 dB。


CT 图像重建


表2 CT 图像重建定量指标对比


图7 CT 图像重建的视觉对比


CT 图像重建的定量指标和视觉对比分别如表 2 与图 7 所示。我们的方法比之前最好的方法要高出 2.5 dB。


总结与后记


本文针对 X 光三维重建问题,设计了一套基于 NeRF 的可同时进行 X 光新视角合成与 CT 重建的算法框架 SAX-NeRF。搜集了一个大规模的 X 光三维重建数据集 X3D。


目前我已经将开源的 github repo 做成了一套相对完善的 codebase,支持 9 类算法,包含了数据生成、可视化的辅助功能函数代码。


参考资料:
https://arxiv.org/abs/2311.10959

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦