让全栈AI的旗帜猎猎作响:“逆行者”华为云

原创 脑极体 2024-06-21 18:43


 如果有人问,AI大模型行业,最近的风向是什么?相信很多人都会说,是“内卷”。


近段时间,“降价”成了大模型的第一关键词。各大云服务商争相加入AI降价潮,甚至有公司模型降价达到了97%的惊人幅度。加上厂商抢卡、模型开发者套壳,种种痕迹似乎印证着AI大模型迎来了极度“内卷”的新风向。


但是,这种“内卷”的尽头一定是不健康的。原因很简单,我们只需要问目前的产业形态几个问题:大模型的核心技术成长了吗?大模型落地应用更容易了吗?产业中那些棘手的问题解决了吗?如果答案都是否定的,那么以降价和内耗为代名词的内卷之路,前途注定是灰暗的。


然而任何风潮中也总有逆行者。与同质化内卷相对应的,是AI大模型领域也潜藏着反内卷的力量。去解决问题,去做实事的反内卷AI之路,虽然更难,但却更有必要。在HDC 2024,我们就看到了一朵逆行的云,一条逆行的AI之路。


(华为常务董事、华为云CEO张平安)


6月21日,华为开发者大会 2024(HDC 2024)在东莞篮球中心揭幕。期间,华为常务董事、华为云CEO张平安发布了盘古大模型5.0,在全系列、多模态、强思维三个方面全新升级。同时,张平安还分享了盘古大模型在自动驾驶、工业设计、建筑设计、具身智能、媒体内容生产和应用、高铁、钢铁、气象等领域的丰富创新应用和落地实践,持续深入行业解难题。此外,华为诺亚方舟实验室主任姚骏、华为云CTO张宇昕分别就盘古大模型5.0训练过程解密和华为云全栈系统性创新发表主题演讲,详细解读华为云在AI领域的全栈创新。


从发布盘古5.0,到展示包括AI原生基础设施、AI开发平台在内的AI全栈创新,我们能够看到华为云选择了做AI大模型领域最难的事,把AI能力从纸面引到真实的生产场景中来。这种行动方案,可以总结为用技术能力的外溢,反对零和博弈的内卷。


以前有句歌词,叫做“走的是人间的道,扛的是顶风的旗”。


想要AI走人间的道,需要云厂商扛起顶风的旗。



AI大潮前

顺风内卷,还是逆风扛旗?


目前阶段,AI大模型技术已经成为各国竞争的科技战略高点,同时也成为科技企业通向下一个时代的船票。全球范围内,可谓无地不AI,无行业不AI。


但在热潮之下,一系列由过快增长带来的“内卷”现象却表现得淋漓尽致。


首先,各大云服务商掀起了大模型价格战,以非常不健康的降价模式期望短期内聚拢用户,实现行业竞争的目标。在这背后,是大模型难以真正走入企业应用,不能解决实际的产业问题,进而导致商业空间受限,云厂商不得已转向以低价换规模的策略。


其次,在大模型降价的态势下,厂商能够投入的技术研发能力越来越少,变成了恶性循环,导致出现了大量以开源模型相互套壳等不良竞争现象。这些极端现象所折射的,是模型同质化过高,核心技术缺乏发展路径,进而出现了不卷能力,不卷应用,只卷面数据和价格现象。


此外,整个中国AI产业面对着AI算力供应短缺,AI算力基础设施进口限制不断加码的问题。整个产业出现了长期的AI算力荒,亟需可持续供应的自主AI算力。


上游基础设施不稳定,中间层核心技术不发展,下游产业场景进不去。在这种情况下,AI大模型领域的“顺风局”开始变味。似乎大模型不是为了用,而仅仅是为了行业竞争而存在。


这个时候,我们也都知道产业需要一些逆行者站出来,来实际解决全行业面对的共性问题,来引导大模型核心技术与产业需求对齐,通过技术能力外溢的方式来拓展大模型的产业边界。


想要实现这个“逆行”,就必须把一面旗帜打出来。


这面旗帜,就是AI核心技术的自主创新,是从算力到工具,再到模型和行业场景的全栈AI能力建设。


华为云,选择逆行于AI行业的“内卷”之风,选择让全栈AI的旗帜猎猎作响。



智能要致用

推动盘古5.0升级


大模型内卷严重,最核心的问题在于模型能力的高度同质化,而大模型之间的雷同感,问题根源在于缺少升级的方向。大家只能参考海外比较流行的大模型能力,最终导致能力差异化被稀释。


而华为云在打造盘古大模型过程中的不同之处在于,是他们找到了源源不断的AI能力升级目标,那就是“用”,是千行万业的真实的智能化需求。不能让大模型停留于测试和理念,要让它走出去,走向行业场景,走向企业需求,然后才能厘清AI的价值是什么,问题是什么,进而找到行之有效的升级之路。


在盘古大模型从3.0到5.0版本的升级过程中,进一步印证了以深入行业场景为目标的大模型升级思路。整体而言,盘古5.0在三方面实现升级:



1.多模态能力提升。


盘古大模型5.0能够更好更精准地理解物理世界,包括文本、图片、视频、雷达、红外、遥感等更多模态。在图片和视频识别方面,可支持10K超高分辨率;在内容生成方面,采用业界首创的STCG(Spatio Temporal Controllable Generation,可控时空生成)技术,聚焦自动驾驶、工业制造、建筑等多个行业场景,可生成更加符合物理规律的多模态内容。


比如盘古5.0可以通过输入华为公司的年度报表,准确回答华为云的收入和增长情况。通过卫星图片找到细微的地表变化,通过巨大的病理照片找到我们想要的病菌的数量级。同时,盘古5.0还可以基于多种模态的输入信息来思考,并且支持将输入的2D图片在3D空间中进行推理。



升级多模态能力的核心驱动力,在于真实的行业场景就是多模态的。只有让大模型看懂物理世界,看懂图标和数据,在巨大信息中寻求细节,大模型才能真正成为生产中的作业工具,成为能够沉浸到行业需求中的智能化引擎。


2.全系列模型打造。


在HDC 2024期间,华为终端、鸿蒙操作系统与盘古大模型5.0的结合备受瞩目。背后的技术升级在于,盘古5.0推出了不同参数规格的模型,可以适配不同的业务场景。十亿级参数的Pangu E系列可支撑手机、PC等端侧的智能应用;百亿级参数的Pangu P系列,适用于低时延、高效率的推理场景;千亿级参数的Pangu U系列适用于处理复杂任务;万亿级参数的Pangu S系列超级大模型能够帮助企业处理更为复杂的跨领域多任务。 


在真实的应用场景中,企业需要在不同类型、不同环境中部署大模型,并且需要进行比较复杂的跨领域协同。盘古5.0的全系列模型打造,也让其能力进一步深入行业场景,成为更加可用的大模型体系。


3.着重强化思维能力。


盘古5.0还在逻辑推理方面进行了极大升级,将思维链技术与策略搜索深度结合,极大提升了数学能力、复杂任务规划能力,以及工具调用能力。思维链帮助智能体(如机器人)更好地理解和预测环境变化,而“策略搜索”是智能体用来适应这些变化并做出决策的过程。两者共同作用,使得智能体能够在复杂环境中进行有效地学习和决策。对于真实的生产场景来说,任务往往是复杂多样,且需要随时调整的。大模型必须具有足够复杂的思维推理能力,才能够真正走向企业的核心生产环节。


总结一下,我们可以发现盘古5.0做了这样三件事:


适配行业需求,提升AI理解物理世界的核心能力。


适配应用场景,打造多样化的模型参数规格。


适配企业业务,实现思维推理能力的升级进化。


这些能力都以在真正的行业与企业中“能用”“好用”“有用”为目标,进而来驱动智能化的前进。


张平安强调,一直以来,华为云盘古大模型都坚定的聚焦行业,在解难题、做难事的道路上不断攻坚克难,砥砺前行,重塑千行万业。华为云将与所有的客户、伙伴和开发者一起,创新不止,攀登不止,让云无处不在,让智能无所不及,加速千行万业的智能升级。



久久方为功

扛起全栈创新的旗帜


在模型适配行业场景的同时,企业面对的另一个问题在于基础设施的薄弱。算力匮乏、工具缺失、基础设施能力不匹配,每一项缺口都可能造成大模型落地过程中的木桶效应。反而言之,如果云计算厂商不能够解决这些核心问题,一味“内卷”大模型的价格与纸面上的创新,也只会让大模型距离真正的商业闭环越来越远,进而造成技术与应用的脱节。


唯有AI全栈创新,才是大模型发展的正道,也是反内卷的旗帜。


今天的华为云,更加坚定地举起了这面旗帜,带来了包括昇腾AI云服务、AI原生基础设施、AI开发平台在内的AI全栈创新。


在算力层面,华为云对昇腾AI云服务进行持续优化,打造了贵州、内蒙古和安徽三大核心枢纽,构建了算力一张网,以此满足全国的算力需求。


同时,昇腾AI云服务可以做到40天万亿参数模型训练无中断,远超业界普遍水平的2.8天,集群故障恢复速度只需10分钟,远低于业界的60分钟。目前,昇腾AI云服务已经服务超过600家企业客户,全面适配100个行业主流大模型,以云服务的方式破解了AI算力匮乏与缺乏自主化的难题。


而在AI全栈创新层面,华为云希望通过云系统创新,打造AI Native的云。


华为云CTO张宇昕表示,通过全栈系统性创新,能够让大模型的数据准备、训练、推理、应用实现全流程的高效率和高性能。华为云的全栈系统性创新覆盖了数据中心、云平台架构和基础设施服务,为 AI 开发提供 AI Native 的基础设施。


一方面,华为云践行“Cloud for AI”,通过全栈系统性创新,实现大模型的数据准备、训练、推理、应用的全流程高效率和高性能。华为云的创新覆盖了数据中心、云平台架构和基础设施服务,为AI开发提供AI Native的基础设施。


另一方面,华为云还希望做到“AI for Cloud”,华为云将盘古大模型和华为在产品研发、数据治理、安全防护、业务运维等各个领域积累的数据和经验相结合,将华为云的服务重塑、升级,让华为云更智能、更高效。


围绕AI Native的云这一目标,在基础设施方面,华为云打造了下一代云基础设施CloudMatrix,其能够改变传统数据中心的架构和算力供给模式,将传统的以CPU为中心的主从架构,演进为多元算力对等全互联架构,并通过高速互联网络协议,将CPU、NPU、GPU等算力资源全部互联和池化,从而把AI算力从单体算力演进到矩阵算力。在存储方面,华为云首创的EMS弹性内存存储服务,通过在NPU卡和持久化存储两层间增加弹性内存存储层,基于Memory Pooling专利技术,通过显存扩展、算力卸载、以存代算等三大手段来打破内存墙,释放极致算力。


从算力到存储,从开发工具到大模型本身,华为云已经构筑起了全栈创新,没有短板的AI基础设施能力。


面向真行业,解决真问题,实现真落地。这或许是华为云的“逆行”,却是千行万业的渴望。



人间是盛景

让AI走上行业的道


如今,华为云的AI能力服务范畴正在不断拓展,从AI大模型风潮中收益的行业和企业,正在与日俱增。


在HDC 2024,我们又可以看到一些全新的行业完成了基于华为云AI全栈创新的智能化飞跃。


比如说,在钢铁领域大名鼎鼎的宝武钢铁,就通过携手华为云打造钢铁大模型,实现了智能化水平的极大提升。


钢铁生产流程主要包括高炉、转炉、连铸、轧制工艺流程,目前华为云的AI方案在高炉炼铁和热轧钢带两个环节中已经得到了有效利用。宝武集团跟华为云合作,用AI大模型实现高炉指标预测,高炉炉况评估,进而实现对高炉工况进行优化,降低高炉能耗,提升高炉产能。双方团队合作之下,就大模型在高炉炼铁的应用梳理出了7大场景,包括焦煤配煤优化、高炉炉温预测、燃料配比优化等。最终实践表明,盘古大模型在高炉炉况优化场景预计每年可以为宝钢降本超过10亿元。


高铁已经是我们每个人生活的一部分。截至2023年底,中国高铁里程达到4.5万公里,居世界第一。在高铁运营工作中,动车巡检需要人工实施,涉及众多检查项,工作量巨大。


一列16编组动车有超过3.2万个故障检测项点,覆盖了8大类型、350多种故障,诸如变形、异物、松动、丢失、断裂、擦伤、漏油、超限等故障,传统的故障识别方法需要大量人工工作。


北铁所与华为云携手,将华为云盘古铁路大模型应用于高铁巡检机器人,实现了动车检测的智能化落地,为动车检测带来了更多价值,不仅将巡检工人从繁重的劳动中解放出来,还大幅提升了检测效率和检测准确率。


北铁所联合华为云采用国内首创的二维图片+三维点云+激光光谱等多模态融合诊断技术,能精准识别超限、异物等各种复杂故障。多模态融合诊断比起单模态,故障识别准确率可提升到98%以上,为铁路行业带来了一种全新的发展思路。


在工业、矿山、媒体、生物制药等领域,都可以见到华为云的AI能力深入其中,为行业带来直观且清晰的价值。



对于大模型来说,纸上谈兵只能昙花一现。只有深入行业,深入真正的人间烟火,才能激活独属于它的盛景。华为云或许逆行于大模型的“内卷”之风,但行走在千行万业的智能化正道。


让双手做事,让双脚沾泥。


让全栈AI的旗帜猎猎作响。


智能化不是在狭小的空间中零和博弈,而是要用技术去丈量四野八荒。


脑极体 从技术协同到产业革命,从智能密钥到已知尽头
评论
  • 食物浪费已成为全球亟待解决的严峻挑战,并对环境和经济造成了重大影响。最新统计数据显示,全球高达三分之一的粮食在生产过程中损失或被无谓浪费,这不仅导致了资源消耗,还加剧了温室气体排放,并带来了巨大经济损失。全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,艾迈斯欧司朗基于AS7341多光谱传感器开发的创新应用来解决食物浪费这一全球性难题。其多光谱传感解决方案为农业与食品行业带来深远变革,该技术通过精确判定最佳收获时机,提升质量控制水平,并在整个供应链中有效减少浪费。 在2024
    艾迈斯欧司朗 2025-01-14 18:45 44浏览
  •   在信号处理过程中,由于信号的时域截断会导致频谱扩展泄露现象。那么导致频谱泄露发生的根本原因是什么?又该采取什么样的改善方法。本文以ADC性能指标的测试场景为例,探讨了对ADC的输出结果进行非周期截断所带来的影响及问题总结。 两个点   为了更好的分析或处理信号,实际应用时需要从频域而非时域的角度观察原信号。但物理意义上只能直接获取信号的时域信息,为了得到信号的频域信息需要利用傅里叶变换这个工具计算出原信号的频谱函数。但对于计算机来说实现这种计算需要面对两个问题: 1.
    TIAN301 2025-01-14 14:15 103浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 454浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 75浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 442浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 464浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 474浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 97浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 322浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 52浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 173浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 512浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 492浏览
  • PNT、GNSS、GPS均是卫星定位和导航相关领域中的常见缩写词,他们经常会被用到,且在很多情况下会被等同使用或替换使用。我们会把定位导航功能测试叫做PNT性能测试,也会叫做GNSS性能测试。我们会把定位导航终端叫做GNSS模块,也会叫做GPS模块。但是实际上他们之间是有一些重要的区别。伴随着技术发展与越发深入,我们有必要对这三个词汇做以清晰的区分。一、什么是GPS?GPS是Global Positioning System(全球定位系统)的缩写,它是美国建立的全球卫星定位导航系统,是GNSS概
    德思特测试测量 2025-01-13 15:42 486浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦