CANFD与传统CAN的差异

智能汽车电子与软件 2024-06-21 17:03



关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯


随着汽车电子、工业自动化的蓬勃发展,CAN总线上的设备数量、数据量都大大增加,给CAN总线带来了极大的挑战。为满足更高的带宽及数据吞吐量,CAN FD(CAN with Flexible Data-Rate)诞生了。那究竟CAN FD与传统CAN的区别是什么?在数据传输和实时性能方面又有什么不同?

一般从使用传统CAN转换到CAN FD会有以下3个原因:

01

CAN FD提高位速率的同时提供更短的CAN帧 

- 延迟时间更短.

- 更好的实时性能

- 更高的带宽

02

CAN FD可以在CAN帧中容纳从8到64字节更多的数据

- 相对更少的系统开销 = 更好的数据吞吐量 

- 发送较大数据对象时,软件更简单高效 

03

CAN FD具有更高性能的CRC算法

- 降低未检测到错误的风险



由于CAN FD是在CAN总线的数据量负荷逐渐达到极限后的产物,本文旨在对比CAN FD与传统CAN的同时详细介绍CAN FD。

01.CAN FD与传统CAN的数据帧格式

图 1 传统 CAN 帧(上图)和 CAN FD 帧(下图)比较。两种帧都是单字节数据,而且在此例中, CAN FD 帧没有提高位速率。可以看出,两种帧从帧起始(SOF)位到整个 11 个仲裁位都相同。仲裁之后,传统 CAN(标记为 A)中是远程传输请求位(RTR 位),CAN FD 帧中是远程请求替换位(RRS 位)。对于数据帧,该位在这两种帧格式中始终为显性(0)。通常定义为逻辑 0 和 0 伏信号的显性位由底部较粗的黑线表示(标记为 B)。

图 1 传统 CAN 和 CAN FD 帧之比较
  
远程传输请求位(RTR 位)之后的位是显性标识符扩展位(IDE 位),表示该帧是使用 11 位仲裁的基本帧格式。注意,本文将不涉及使用 29 位仲裁的 EF 扩展帧格式(EFEFF) 。

IDE 位之后是 r0 位(保留位),其在传统 CAN 帧格式中始终为显性。在 CAN FD 帧格式中,该位为隐性(见 C),指示该帧不是传统 CAN 帧,而是保留格式的 CAN 帧,现在称其为 CAN FD(CAN Flexible Data-rate)。换句话说,该位指示 CAN 帧是传统 CAN 帧还是 CAN FD 帧。自 ISO11898-1 标准发布以来,该位被称为 FDF 位(灵活数据格式位),代替在 ISO11898-1 标准先前版本中被称为 r0 位的名称。在任何先前文档或数据表中见到对 r0 位的引用,它与 2015 年发布的 ISO11898-1 版中的 FDF 位是相同的。

02. CANFD的附加位

FDF 位/r0 位(从现在开始我们将其称为 FDF 位)之后是 FD 格式的保留位(res)和传统 CAN 格式的数据长度码位(DLC)。换句话说,按照以前的 ISO11898-1 标准所有产生的传统 CAN 控制器都将错误地解读 CAN FD 帧,从而导致传统 CAN 控制器的错误帧。在循环冗余检查(CRC)定界符(图 1 中标记为 D)之后,传统 CAN 和 CAN Fd 在其位模式方面是一致的。换句话说,在下一帧开始之前,传统格式和 FD 格式使用相同的结束模式。

所有 CAN FD 控制器都可以处理传统 CAN 帧和 CAN FD 帧的混合。这意味着在现有系统中开始使用 CAN FD 控制器以及仅使用传统 CAN 格式的传统 CAN 控制器是可行的。当所有老的传统 CAN 控制器都被 CAN FD 控制器替换时,可以将传统 CAN 帧与 CAN FD 帧混合使用,或者仅使用两种类型之一。 

在 CAN FD 帧中的 FDF 位之后是保留位。将此位设置为隐性指示未来协议,与 FDF 位指示从传统 CAN 转换到 CAN FD 格式的方式相同。未来协议尚未定义。值得注意的是,传统 CAN 格式的 r0/FDF 位用于指示 CAN FD 格式之前耗费了 25 年时间。

在保留位之后是 BRS 位(位速率转换)。这个额外的位允许 CAN FD 帧以两种不同的格式发送。如果 BRS 位为显性被发送,则所有位将以与图 1 所示的仲裁中所使用的相同的位速率发送。如果BRS 位为隐性,则在此位后帧格式将使用较高的位速率,直到并包括 CRC 定界符。

BRS 位之后是 ESI 位(错误状态指示器),通常显性发送为主。如果 CAN FD 帧发送节点变为错误-被动,则该位将被隐性发送,指示发送方节点存在重要的通信问题。目前尚不清楚该位如何在更广泛的应用中使用,但是它已经被汽车制造商根据所需进行了采纳。 

在这 3 个新位(保留位,BRS 位和 ESI 位)之后是 4 个 DLC 位,指示 CAN 帧中的数据字节数。表 1 显示了这 4 个位如何用于指示 CAN 帧中的数据字节数。传统 CAN 帧最多可容纳 8 个字节的数据。从表中可以看出,超出 8 个字节可以发送 DLC 码,但只有 8 字节的数据将被放置在发送的 CAN 帧中。仔细观察表格你会发现 9 到 15 的 DLC 在 CAN FD 格式中有所差异。9 到 63 的任何数量的字节需 6 位 DLC,并且到 64 字节将需 7 位 DLC。折中方案是保持 4 位 DLC,并限制 CAN FD 帧(12, 16, 20, 24, 38, 48 和 64)中的字节长度数。

03.CANFD显著提高数据传输速率

DLC 位后的数据(图 1 显示一个数据字节的 CAN 帧)。该数据前和后的位是固定长度的任意数量数据字节。本例中要传输一个字节的数据,传统格式需 55 位,CAN FD 格式需 70 位。在最差的情况下,也可以在帧中包含多个填充位。如果帧在同一级别的行中超过 5 位,则协议将在帧中添加一个额外的位,具有反相极性,以确保可以使用级别更改来重新同步采样点。

这个添加和除去额外的位用于重新同步的过程称为填充,并且这些位在 CAN 协议中被标记为填充位。通过在每个 CAN 帧中打包更多的数据来提高数据传输效率,这可以从表 1 的最后两列看出。效率方程式假定在开销中最差情况下的填充位数。由于其较低的开销,传统 CAN 与 CAN FD 相比效率略高。通过将 CAN FD 帧中的字节数从 8 字节增加到 64 字节,可以将效率从 50%增加到88%。


在表中,还包括以不同帧格式使用的 CRC 码。传统 CAN 格式对于所有帧类型使用 15 位 CRC 编码,因为所有帧具有相似的长度。CAN FD 帧更复杂一些,因为 64 字节帧比 8 字节帧要长 8 倍。为了解决这个问题,在 CAN FD 帧中使用两种不同的 CRC 长度:如果帧保持 16 字节或更少,则使用 17 位的 CRC-17;且如果 CAN 帧保持 20 字节或更多,则使用具有 21 位的 CRC-21。

它是具有 2 个额外位的 CRC 加上填充计数器中的 4 位和固定填充位,这就使得 CAN FD 帧比传统 CAN帧更长。有人会说这个比较不完全公平,因为传统CAN 帧在CRC段可以有多达3个填充位,在控制段还可以有 3 个位。

CAN FD 帧的 CRC 段中的额外位为数据内容提供了更好的保护,系统高安全性是从传统 CAN 转到CAN FD 的充分理由。

CAN 帧中有超过 8 个字节的数据,由于提高了效率,数据吞吐量将会增加,这是从传统 CAN 转到CAN FD 的另一个原因。

04.如何平衡数据传输效率与实时性能

重要的是要记住,尽管使用更长的 CAN 帧的效率确实有所提高,但 CAN 帧和每秒帧数更少,这增加了通信中的延迟时间并降低了实时性能。为了减少此问题并增加数据吞吐量,可以将 CAN FD 帧中的位速率提高到传统 CAN 以上的可能性。

迄今为止对 CAN FD 的描述是在整个 CAN 帧中具有相同的位速率。如上所述,隐性 BRS 位将要求在帧的数据部分中切换到较高的位速率。

在图 2 中,添加了第 3 个 CAN 帧。该第 3 帧是具有与中间 CAN FD 帧相同内容的 CAN FD 帧,但是在本例中,该帧以中间的 CAN FD 帧的数据速率的两倍发送帧。

图 2 CAN FD 帧不含/含有提高 2 倍数据速率

因为它具有相同的内容,所以你将获得相同的 DLC 和数据,但是当 CAN FD 以更高的位速率发送时,BRS 位将被隐性发送(见 E)。BRS 位包含在 CRC 计算中,即使 CAN-ID,DLC 和数据相同,也会产生两个不同的 CRC 内容。

从图 2 可以看出,以较高位速率发送的第一个位是 ESI 位,后面是 DLC,数据字节和 CRC 位。以较高位速率发送的最后一位是 CRC 定界符。由此可以理解,较高的位速率不仅适用于 CAN Fd 帧的数据段,而且也适用于周围的位。

图 3 与图 2 相同,除了先前描述的帧下面的一个新帧。这个新帧与所有其他帧具有相同的内容,但位速率是仲裁位速率的八倍。与具有不变位速率或双位速率的 CAN FD 帧相比,变化相对较大。

可以看出,不仅数据的单字节获得较高的位速率,而且帧的 DLC 和 CRC 部分也一样,其总共有大约 40 位。

图 4 显示 3 个 CAN 帧,顶部为 8 个字节的传统 CAN 帧。中间是一个具有 64 字节的 CAN FD 帧,底部的 CAN 帧是相同的 CAN FD 帧内容,但是位速率增加(速度快八倍)。

 图 3 在图 2 的基础上多了位速率增加 8 倍的 CAN FD 帧

从图 4 可以看出,更多的数据将使 CAN 帧传送时间更长,这将阻止其它高优先级 CAN 帧开始发送。为了保持实时性能,需要增加位速率以减少 CAN 帧的长度,并且减少 CAN 帧占用通信线路的时间以及防止其它高优先级帧访问通信。

 图 4 顶部是 8 字节传统 CAN帧;
中间是位速率相同的 64 字节 CAN FD帧;
底部是位速率增加了 8 倍的 64 字节 CAN FD帧

总之,具有高位速率的 CAN FD 将增加实时性能,因为较高的位速率使得 CAN 帧在传送时间上更短,从而减少通信中的延迟。通过在每个帧中传送更多数据,可以增加数据吞吐量,但是如果不结合使用较高的位速率,这将降低实时性能。在许多情况下,编程中会使用 64 字节长的 CAN 帧,这通常在系统暂停且没有实时控制运行时完成。即使没有实时需求,使用更高的位速率来提高数据吞吐量仍然有利,并缩短下载时间。

来源:智能网联汽车网



   --END--

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论 (0)
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 147浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 333浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 195浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 210浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 85浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 223浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 387浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 389浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 98浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 273浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 162浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 86浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 236浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦