半导体后端工艺|第四篇:了解不同类型的半导体封装(第二部分)

芯存社 2024-06-19 17:16

在本系列第三篇文章中,我们介绍了传统封装和晶圆级(Wafer-Level)封装,本篇文章将继续介绍将多个封装和组件整合到单个产品中的封装技术。其中,我们将重点介绍封装堆叠技术和系统级封装(SiP)技术,这两项技术都有助减小封装体积,提高封装工艺效率。


01


堆叠封装 (Stacked Packages)

想象一下,在一个由多栋低层楼房组成的住宅综合体内,若要容纳数千名居民,则需要占据非常大的面积才能满足需求。然而,一栋摩天大楼就能容纳同样数量的居民。这个例子清楚地说明了堆叠封装具备的一大优势。相对于将多个封装水平分布在较大面积的产品,由堆叠封装(Stacked Package)组成的产品可以在减小体积的同时进一步提高性能。除了作为一种重要封装技术,堆叠封装还是产品开发过程中采用的一种基本方法。


过去,产品往往在一个封装体内只封装一个芯片,但现在可以开发涵盖多种不同功能的多芯片封装或将多个存储器芯片集成到容量更大的单个封装中。此外,系统级封装可将多个系统组件整合在单个封装体内。这些技术的问世使半导体公司能够在打造高附加值产品的同时,满足多样化的市场需求。

▲图1:堆叠封装方法的分类(ⓒ HANOL出版社)


如图1所示,基于不同的开发技术,堆叠封装可分为三大类:1)通过垂直堆叠封装体而形成的封装堆叠;2)使用引线键合技术将不同芯片堆叠在单个封装体内的芯片叠层封装;及3)使用硅通孔(TSV)1技术替代传统引线键合技术实现内部电气互连的芯片叠层封装技术。每种堆叠封装技术都具有不同的特点、优势和局限性,这将决定它们在未来的应用。


1 硅通孔(TSV,Through Silicon Via):一种可完全穿过硅裸片或晶圆实现硅片堆叠的垂直互连通道。


封装堆叠

(Package Stacks))

封装堆叠通过垂直堆叠封装体来实现。因此,其优缺点与芯片叠层封装正好相反。封装堆叠方法将完成测试的封装体相堆叠,在某个封装体测试不合格时,可轻松地将其替换为功能正常的封装体。因而,其测试良率相比芯片叠层封装更高。然而,封装堆叠尺寸较大且信号路径较长,这导致其电气特性可能要劣于芯片叠层封装。


最常见的一种封装堆叠技术便是叠层封装(PoP),它被广泛应用于移动设备中。对于针对移动设备的叠层封装,用于上下层封装的芯片类型和功能可能不同,同时可能来自不同芯片制造商。


通常,上层封装体主要包括由半导体存储器公司生产的存储器芯片,而下层封装体则包含带有移动处理器的芯片,这些芯片由无晶圆厂的设计公司设计,并由晶圆代工厂及外包半导体组装和测试(OSAT)设施生产。由于封装体由不同厂家生产,因此在堆叠前需进行质量检测。即使在堆叠后出现缺陷,只需将有缺陷的封装体替换成新的封装体即可。因此封装堆叠在商业层面具有更大益处。


芯片堆叠(Chip Stacks)- 

引线键合芯片叠层封装

 (Chip Stacks With Wire Bonding)

将多个芯片封装在同一个封装体内时,既可以将芯片垂直堆叠,也可以将芯片水平连接至电路板。考虑到水平布局可能导致封装尺寸过大,因而垂直堆叠成为了首选方法。相比封装堆叠,芯片堆叠封装尺寸更小,且电信号传输路径相对更短,因而电气特性更优。然而,若在测试中发现某个芯片存在缺陷,则整个封装体就会报废。鉴于此,芯片堆叠封装的测试良率较低。


在芯片堆叠封装中,要想提高存储器容量,就需要在单一封装中堆叠更多的芯片。因而,可将多个芯片集成在同一封装体内的技术应运而生。但与此同时,人们不希望封装厚度随着堆叠芯片数量的增加而变厚,因此致力于开发能够限制封装厚度的技术。要做到这一点,就需要减少芯片和基板(Substrate)等可能影响封装厚度的所有组件的厚度,同时缩小最上层芯片和封装上表面之间的间隙。这给封装工艺带来了诸多挑战,因为芯片越薄越易于损坏。因此,目前的封装工艺正致力于克服这些挑战。


硅通孔(TSV)- 

硅通孔芯片叠层封装

(Chip Stacks With TSV)

硅通孔是一种通过在硅片上钻孔来容纳电极的芯片堆叠技术。相比采用传统引线方法实现芯片与芯片(Chip-to-Chip)互连或芯片与基板(Chip-to-Substrate)互连,硅通孔通过在芯片上钻孔并填充金属等导电材料来实现芯片垂直互连。尽管使用硅通孔进行堆叠时使用了芯片级工艺,但却采用晶圆级工艺在芯片正面和背面形成硅通孔和焊接凸点(Solder Bump)。由此,硅通孔被归类为晶圆级封装技术。

▲图2:使用硅通孔技术的芯片剖面图(ⓒ HANOL出版社)


硅通孔封装的主要优势在于性能优越且封装尺寸较小。如图2所示,使用引线键合的芯片堆叠封装利用引线连接至各个堆叠芯片的侧面。由于堆叠芯片以及连接引脚(Pin)的数量增加,引线变得更加复杂,而且也需要更多空间来容纳这些引线。相比之下,硅通孔芯片堆叠则不需要复杂的布线,因而封装尺寸更小。


正如上一篇文章所介绍,倒片封装(Flip Chip)具有良好的电气特性,原因有以下几点:其更易在理想位置形成输入/输出(I/O)引脚;引脚数量增加;电信号传输路径较短。基于同样的原因,硅通孔封装也具有良好的电气特性。当从一个芯片向其下方的芯片发送电信号时,硅通孔封装使得信号能够直接向下传输。相反,如果使用引线键合封装,则信号会先向下传输至基板,随后再向上传输至芯片,因而信号传输路径要长得多。如图2所示的引线芯片堆叠,芯片中心无法进行引线连接。相反,硅通孔封装可在芯片中心钻孔,形成电极,并与其他芯片连接。与引线连接不同,硅通孔封装可大幅增加引脚数量。


高宽带存储器(HBM)采用一种全新的DRAM架构,这种架构借助硅通孔技术来增加引脚数量。通常,在DRAM规范中,“X4”表示有四个引脚用于发送信息,或可以同时从DRAM发送4位(bit)信息。相应地,X8表示8位,X16表示16位,以此类推。增加引脚数量有利于同时发送更多信息。然而,由于自身局限性,引线芯片堆叠最多只能达到X32,而硅通孔堆叠则没有这方面的局限性,使HBM可达到x1024。


目前,将硅通孔封装用于DRAM的量产存储器产品,包括HBM和3D堆叠存储器(3DS)。前者用于图形、网络和高性能计算(HPC)应用,而后者则主要用作DRAM存储器模块。

▲图3:使用HBM的2.5D封装(ⓒ HANOL出版社)


HBM并非一种全封装产品,而是一种半封装产品。当HBM产品被送到系统半导体制造商那里时,系统半导体制造商会使用中介层2构建一个2.5D封装3,将HBM与逻辑芯片并排排列,如图3所示。由于2.5D封装中的基板无法提供用于支持HBM和逻辑芯片的所有输入/输出引脚的焊盘(Pads),因此需要使用中介层来形成焊盘和金属布线,从而容纳HBM和逻辑芯片。然后,再将这些中介层与基板连接。这些2.5D封装被认为是一种系统级封装。


同样采用硅通孔封装的产品还有3DS DRAM,这是一种在PCB板上安装球栅阵列封装(BGA)4的内存模块。尽管服务器中的DRAM存储器模块需要高速传输和大容量存储,但使用引线键合的芯片堆叠封装因其速度局限性而无法满足这些要求。鉴于此,服务器等高端系统往往使用由硅通孔芯片堆叠封装构成的模块。


2 中介层(Interposer):用于2.5D配置中的裸片之间又宽又快的电信号管道。


3 2.5D封装(2.5D package):2.5D和3D封装在每个封装中包含多个集成电路。在2.5D结构中,两个或多个有源半导体芯片(Active Semiconductor Chips)并排排列在硅中介层上。在3D结构中,有源芯片通过裸片垂直堆叠的方式集成在一起。


球栅阵列封装(BGA):一种表面贴装芯片封装,使用锡球作为其连接器。


02


系统级封装(SiP)

由HBM和逻辑芯片构成的封装属于系统级封装。顾名思义,系统级封装是指在单个封装体中集成一个系统。然而,完整的系统还需包括传感器、模拟数字(A/D)转换器、逻辑芯片、存储芯片、电池和天线等组件,但就目前的技术发展水平而言,还无法将所有这些系统组件集成到单个封装体内。因此,研究人员正致力于不断开发针对这一领域的封装技术,而当前的系统级封装是指在单个封装体内集成部分系统组件。例如,使用HBM的封装将HBM和逻辑芯片集成到单个封装体内,形成一个系统级封装。


不同于系统级封装,系统级芯片(SoC)在芯片级实现系统功能。换言之,在同一个芯片上实现多个系统功能。例如,目前大多数处理器都在芯片内集成了静态RAM(SRAM)存储器,可同时在单个芯片上实现处理器的逻辑功能和SRAM的存储功能。因此,这些处理器被归类为系统级芯片。


系统级芯片需要将多种功能组合到单个芯片中,因此开发流程复杂而漫长。此外,如要对已开发出来的系统级芯片中单个元件的功能进行升级,则需从头开始对它们进行设计和开发。而系统级封装开发起来则更容易也更快,这是由于系统级封装是通过将已开发的多个芯片和器件整合在单个封装体内来实现。由于芯片本身是单独开发和制造,即使器件的结构完全不同,也很容易将它们集成到单个封装体内。同时,如果只需对功能的一个方面进行升级,则无需从头开发封装就可在芯片内集成新开发的器件。然而,如果产品将被长期大量使用,则相比系统级封装而言,将其开发为系统级芯片将更高效,因为系统级封装需要制造的材料更多,这会增加封装体积,只有这样才能将多个芯片整合到单个封装体内。


尽管系统级芯片和系统级封装之间存在各种差异,但两者并不是非此即彼的关系。事实上,可以将两者结合起来,以产生协同效应。完成系统级芯片开发后,可将其与其他功能芯片封装到单个封装体内,然后作为增强型系统级封装来实现。

▲图4:使用硅通孔堆叠的系统级芯片和系统级封装的信号传输路径长度比较(ⓒ HANOL出版社)


在对系统级封装和系统级芯片的性能进行比较时,人们原本以为系统级芯片在单个芯片上实现,因而其电气特性会更优异。然而,随着芯片堆叠技术(如硅通孔技术)的发展,系统级封装的电气特性与系统级芯片旗鼓相当。图4对使用硅通孔堆叠的系统级芯片和系统级封装的信号传输路径进行了比较。当信号从系统级芯片的一端传输到对角的另一端时,将系统级芯片分为9个部分并使用硅通孔技术进行堆叠时,传输路径会短得多。

▲图5:芯粒概念图


除了使用硅通孔堆叠的系统级封装因具备各种优势而成为焦点之外,近年来一种称为芯粒(Chiplets)的技术也受到了广泛关注。如图5所示,这种技术按照功能对现有逻辑芯片进行拆分,并通过硅通孔技术对它们进行连接。与单块芯片相比,芯粒拥有三大优势。


首先,芯粒的良率较单块芯片有所提高。当晶圆(Wafer)上芯片的尺寸较大时,则晶圆良率就会受到限制,而缩小芯片尺寸可提高晶圆良率,从而降低制造成本。例如,将一个直径为300毫米的晶圆切割为100或1000个芯片(裸片)。如果在晶圆加工过程中,由于晶圆正面平均分布着五种杂质而导致五个芯片出现缺陷,则切割为100个芯片的产品良率为95%,而切割为1000个芯片的产品良率则为99.5%。因此,包含裸片数量越多或芯片尺寸越小的产品,其良率越高。鉴于此,按照功能对芯片进行拆分,并将其作为系统级封装而非系统级芯片中的单个芯片,有助于提高成本效益。


第二个优势是开发流程得到简化。对于单个芯片而言,如需升级芯片功能或采用最新技术,则需重新开发整个芯片。然而,如果对芯片进行分割,则只需对具有相关功能的芯片进行升级或使用最新技术对其进行开发即可,因而可缩短开发周期,提高工艺效率。例如,可以针对一些分割芯片采用现有的20纳米(nm)技术,同时针对其他芯片采用最新的10纳米以下技术,以此提高开发效率。


第三个优势是可促进技术开发集中化。由于芯片按照功能进行划分,因而无需针对每个功能来开发相应的芯片。只需开发用于核心技术的芯片,而其他芯片则可以通过购买或外包获取,这样企业就可以专注于开发自己的核心技术。


鉴于这些优点,主要半导体厂商正在引入基于芯粒技术的半导体产品或将其纳入自身的发展路线图。


在上一篇文章中,我们介绍了各种传统封装和晶圆级封装技术,而本篇文章则对更多封装技术及其不同特点进行了综述。目前,堆叠封装和系统级封装技术已取得长足发展,半导体研究人员将继续致力于提高这些高质量技术的能力,在提高其功能的同时,尽量缩小其占用的空间。通过生产兼具尺寸、功能和性能优势的封装产品,封装工艺的效率有望得到进一步提升。


推荐阅读

MTK、高通、紫光展锐手机SOC平台型号对比汇总(含详细参数,更新至2023年2月份)

2013-2023年全球智能手机出货量排名,明年智能手机市场将全面反弹

一文看懂NAND、eMMC、UFS、eMCP、uMCP、DDR、LPDDR及存储器和内存区别

SK hynix海力士DDR、LPDDR、UFS、eMMC、eMCP、uMCP规格型号参数对照表

什么是集成电路、工艺、CPU、GPU、NPU、ISP、DSP ?存储器和内存的区别是什么

科普;设计一颗芯片有多难,芯片是如何制造的,一片晶圆能切割多少片芯片?

三星内存eMCP、UMCP、eMMC、LPDDR、DDR型号参数对照表

WiFi发展史丨什么是WiFi6、WiFi6E和WiFi7以及参数对比

消费级、工业级、汽车级、军工级、航天级芯片区别对比

全球前五大存储厂商产品介绍Roadmap及代理商信息

KIOXIA 铠侠UFS、eMMC、NAND型号参数对照表

全球移动通信射频前端厂商汇总(含晶圆、封测)

手机平板常用存储型号容量对照表

全球80家无线通信模组企业汇总及介绍

三星、苹果手机处理器参数及代表机型

PCB板的价格是怎么算出来的(详解)

一文看懂智能手机常用传感器

MCU最强科普总结(收藏版)

芯存社 移动通信芯片组、存储器、射频前端。
评论
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦