导 读
随着人工智能时代的到来和数字化转型的深入发展,对基于高速数据传输和高性能数据计算的半导体芯片需求不断增长。其中,以光子作为信息载体的光电子集成芯片及其相关技术的潜力正不断被挖掘和开发,凸显出它们在突破现有电子系统技术瓶颈与极限的可能性。
光电二极管作为光电集成芯片中必需的基本元件,已被广泛应用于发光二极管(LED)、激光器、探测器等。然而,无论是作为发光单元还是探测单元的光电二极管,均需配置相应的外部驱动电路来实现电信号和光信号之间的转换,这一传统模式极大地限制了整个光电系统的信号传输速度和带宽,也不可避免地增大了系统体积和复杂度,从而限制了整个光电集成技术的发展。
鉴于此,中国科学技术大学孙海定教授iGaN Lab课题组与武汉大学刘胜院士团队合作,提出了新型三电极光电PN结二极管结构,通过在P型区域引入“第三电极”,构筑载流子调制新方法,实现了第三端口外加电场对二极管光电特性的有效调控。该三电极光电二极管将传统的光电二极管与一个“金属-氧化物-半导体(MOS)”结构进行巧妙而又紧凑的片上器件集成,从而利用外加电场对二极管发光或探测过程中的载流子输运行为进行有效调控。此外,团队还基于该新型光电二极管构建了光通信系统和可重构光电逻辑门系统,为开发下一代光电集成芯片提供了一种全新的器件架构和系统解决方案。
相关研究成果以“A three-terminal light emitting and detecting diode”为题,于2024年4月29日作为封面文章在线发表于国际电子器件顶级期刊Nature Electronics(Nature Electronics 7, 279-287 (2024))。
中国科学技术大学微电子学院博士生Muhammad Hunain Memon和余华斌为论文共同第一作者。中国科学技术大学孙海定教授、武汉大学刘胜院士为论文共同通讯作者。微电子学院左成杰教授,中国科学院无线光电通信重点实验室龚晨教授,复旦大学沈超研究员,澳大利亚国立大学傅岚教授和沙特阿卜杜拉国王科技大学Boon Ooi教授等参与了项目的联合攻关。
器件结构及工作原理
基于三电极二级管的光通信系统
基于三电极二极管的可重构光电逻辑门系统
未来展望
论文信息