单片机常用温度控制算法

strongerHuang 2024-06-17 08:20

关注+星标公众,不错过精彩内容

编排 | strongerHuang

微信公众号 | 嵌入式专栏

温度传感器在我们现实生活中应用非常广泛,小到ic芯片内部集成温度传感器,大到各种家电、工业设备安装温度传感器。

今天就给大家分享一下温控仪中几种常见的温度控制算法。

概述

常用PID调节器/温控仪控制算法包括常规PID、模糊控制、神经网络、Fuzzy-PID、神经网络PID、模糊神经网络、遗传PID及广义预测等算法。

常规PID控制易于建立线性温度控制系统被控对象模型;模糊控制基于规则库,并以绝对或增量形式给出控制决策;神经网络控制采用数理模型模拟生物神经细胞结构,并用简单处理单元连接成复杂网络;Puzzy-PID为线性控制,且结合模糊与PID控制优点。

温度控制系统是变参数、有时滞和随机干扰的动态系统,为达到满意的控制效果,具有许多控制方法。故对几种常见的控制方法及其优缺点进行了分析与比较。

常见温度控制方法

1.常规PID控制
PID控制即比例、积分、微分控制,其结构简单实用,常用于工业生产领域。原理如图1:
图1 常见PID控制系统的原理框图

明显缺点是现场PID参数整定麻烦,易受外界干扰,对于滞后大的过程控制,调节时间过长。其控制算法需要预先建立模型,对系统动态特性的影响很难归并到模型中。在我国大多数PID调节器厂家生产的调节器均为常规PID控制算法。

2.模糊控制
模糊控制(Fuzzy Control)是以模糊集合论、模糊语言变量及模糊逻辑推理为基础的计算机控制。原理如图2。昌晖仪表YR-GFD系列傻瓜式PID调节器使用的就是模糊控制算法。
图2  模糊控制系统原理框图

3.神经网络控制
神经网络控制采用数理模型的方法模拟生物神经细胞结构,用简单处理单元连接形成各种复杂网络,并采用误差反向传播算法(BP)。原理如图3: 
图3 神经网络控制系统的原理框图

4.Fuzzy-PID控制
模糊控制不需知道被控对象的精确模型,易于控制不确定对象和非线性对象。PID本质是线性控制。将模糊控制与PID结合多,以Fuzzy-PID混合控制为例,据给定值与测量值之偏差e选择智能控制器,根据e的变化选择控制方法,当|e|≤emin或|e|≥emax时,采用PID控制;当emin≤|e|≤emax时,采用Fuzzy控制。其结构框图如图4。
图4 Fuzzy-PID混合控制结构框图

5.神经网络PID控制
在PID控制的基础上,加入神经网络控制器,构成神经网络PID控制器,如图5。神经网络控制器NNC是前馈控制器,通过对PID控制器的输出进行学习,在线调整自己,目标是使反馈误差e(t) 或u(t)趋近于零,使自己逐渐在控制中占据主导地位,以减弱或最终消除反馈控制器的作用。晖仪表YR-GAD系列人工智能调节器/温控仪使用的就是神经网络PID控制控制算法。
图5 神经网络PID控制结构框图

6.模糊神经网络控制
将模糊逻辑与神经网络结合,采用神经网络模糊逻辑推理网络模型和快速的自学习算法,通过网络的离线训练和在线自学习使控制器具有自调整、自学习和自适应能力,达到模糊智能控制。如图6。
图6 模糊神经网络控制系统结构图

7.遗传PID控制
遗传PID控制是将控制器参数构成基因型,将性能指标构成相应的适应度,利用遗传算法来整定控制器的最佳参数,不要求系统是否为连续可调,能否以显式表示。基于遗传算法的自适应PID控制的原理框图如7。

遗传PID温控系统将测量值与给定值进行比较,用遗传算法来优化PID参数,然后将控制量输出,实现将PID参数串接构成完整染色体,从而构成遗传空间中的个体,过通过繁殖交叉和变异遗传操作生成新一代群体,经过多次搜索获得最大适应度值的个体。
图7 基于遗传算法的自适应PID控制结构图

8.广义预测控制
预测控制(Predictive Control)是基于模型的计算机控制算法。其预测模型有脉冲响应模型、阶跃响应模型、CAMRMA模型和CARIMA模型。基于CARIMA模型的广义预测控制(GPC)是一种新型计算机控制算法。

常见温度控制方法的对比分析

通过上述温度控制方法的原理分析,下表给出各种温度控制特性与应用场合的情况。
温控仪控制算法
控制算法的控制特性
温控仪应用场合



 常规PID拄制
 优点:结构简单、实用,性价比高。
 缺点:鲁棒性不强;适应性不快;协调
 性不够好等
 易于建立的线性温度控制系统的被控对
 象模型
 模糊控制
 与传统的PID控制相比,响应快,超
 调量小,鲁棒性强
 纯滞后,参数时变或非线性的温度控制
 系统,如干燥机、工业炉等的温度控制
 神经网络控制
 鲁棒性强,响应速度快,抗干扰能力
 强,算法简单,易于用硬件和软件实现
 多变量、多参数、非线性与时变系统
 如:电阻炉的温度控制等

合控
 Fuzzy-PID控制
 具有很强的适应性,只要知道部分知识
 即可建立BP算法
 一些大滞后系统中自动寻优P、I、D参
 数,如管式加热炉的温度控制
 模糊神经网络控制
 动态响应快,能达到高精度的快速控制,
 具有极强的鲁棒性和适应能力,稳定性好
 需要不断修正控制参数的温度控制系统。
 如热电偶校验仪等控温装置
 遗传PID控制
 调试方便,控制精度高,抗干扰性强,
 较高的稳定性能
 寻求全局最优且不需任何初始信息的P、
 I、D参数寻优温控系统中,如陀螺温
 控系统
 自适应广义预测
 及控制
 鲁棒性强,控制精度高
 医用温度控制,如微波热疗中的 温度
 控制
 模糊、神经网络
 模糊控制鲁棒性强。动态响应与上升时
 间快,超调小,PID控制器的动态跟踪
 品质好和稳态精度高
 具有较太的滞后性,非线性、时定性的
 温度控制系统,如高分子聚合 物反应
 温度控制等
 模糊、神经网络
 和遗传控制
 实现温度随外界干扰条件的乏化,实时的
 调节网络和控制规律的功能,具有良好
 的温度跟踪性能和抗干扰能力
 对升温速度和恒温过程的精度要求较高
 的控制系统,如淬此炉温度控制等

将线性与非线性控制相结合。使温度能满足用户的精度要求是温控系统的最终目的。
在实际应用中,根据具体的应用场合、不同的加热对象、不同的控制要求和控制精度,选择不同的控制方式。
来源:
http://blog.sina.com.cn/s/blog_c687c00e0102w5oz.html

声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

------------ END ------------



●专栏《嵌入式工具

●专栏《嵌入式开发》

●专栏《Keil教程》

●嵌入式专栏精选教程


关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。



点击“阅读原文”查看更多分享。

strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 131浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 67浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 33浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 64浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 50浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 24浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 71浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 111浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 64浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 122浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 52浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦