简约而不简单!雷达基本原理与系统入门课件

电子万花筒 2024-06-17 07:27


电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低5%


What is RADAR an acronym for?   Radio Detection and Ranging.
Radio wave is generated, transmitted, reflected, and detected.
RADAR unimpaired by night, fog, clouds, smoke.
Not as detailed as actual sight.
RADAR is good for isolated targets against a relatively featureless background.

Stealth Ship
Designed to test the effects of stealth technology on Naval Warships.
What kind of radar reflection will we get off this target?
Note the angles, also coated with radar absorbing material.

Pulse - RADAR transmits a series of pulses separated by non-transmission intervals during which the radar “listens” for a return.

Continuous Wave - Constantly emitting radar.  Relative motion of either the radar or the target is required to indicate target position.  Frequency shift.

1.  The pulse width determines the minimum range that the target can be detected.
     a.  If transmitter is still on when the pulse (echo)is returned then won’t see
         the return.
     b.  Need short pulses to detect close targets. 
2.  Need long pulses to have sufficient power to reach targets that have long ranges.
3.  Pulse Repetition Time, Frequency or Rate.
          a.  The length of time the transmitter is off  (longer PRF) the longer the
          radar’s maximum range will be.  (Use the drawing to explain)
KEY Points:
 1.  Varying the pulse width affects the range of the radar.
 2.  Need short pulses for short range targets.
 3.  PW determines radar’s minimum range resolution.
 4.  The slower the PRF the greater the radar’s maximum
                             range.
 5.  The faster the PRF the greater the radar’s accuracy.

PW - Minimum range and Maximum Range

 Minimum - PW determines when the radar begins listening for a target return
 Maximum - PW determines on time for average power,  need power to look long distances.

PRF - Maximum Range
 Quit listening for a return pulse and transmit again

1.  Synchronizer:
     a.  Coordinates the entire system
     b.  Determines the timing of the transmitted pulse
     c.  Includes timers, modulator and central control.
2.  Transmitter:
     a.  Generate the pulse (RF) at the proper frequency and amplify.
3.  Antenna:
     A.  Receives energy from the transmitter, radiates it in the form of a
          highly directional beam.
     B. Receives the echoes for pulse radars.
4.  Duplexer:
     a.  Allows one antenna to be used to transmit and receive.
     b.  Prevents transmitted RF energy from going directly to the receiver.
     c.  Tells the antenna to radiate or receive.
5.  Receiver:  receives incoming echoes from antenna, detects and amplifies        
     the signal, and sends them to the display.
6.  Display:  Displays the received video to the operator.
7.  Power Supply:  Provides power to all the components of the system.
8.  Discuss the antenna Bearing loop back to the display and its function.

Second major type of radar.
Produces a constant stream of energy.
Can’t distinguish distances (range) because no interval between pulses.
Can distinguish between moving and non-moving targets by using Doppler frequency shifts.

1.  Doppler frequency shift describes the effect that motion has on a reflected
     frequency.
2.  Use the diagram to show:
     a.  If the wall is moving away a ball will have to travel farther than the
         previous ball so the reflected balls are further apart.
     b.  If the wall is moving toward, a ball will have to travel a shorter distance
          than the previous ball so the reflected balls are closer together.
3.  If you assume that each ball represents the top of a wave so the distance
     between each ball represents a wave cycle then you find:
     a.  The frequency of the echo is lower if the target is moving away.
     b.  The frequency of the echo is higher if the target is coming towards.
  ** This is why the sound of a passing train or airplane goes from
        higher pitch to lower pitch.
4.  Key Points:
    a.  Frequency expansion  is the lowering of the echo frequency caused
         by an opening target (target moving away).  DOWN DOPPLER
     b.  Frequency compression is the raising of the echo frequency caused
          by the closing target (target moving closer).  UP DOPPLER
     c.  The moving of the transmitter can also cause frequency shifts (it’s
          relative motion that produces the effect).
     d.  The faster the relative motion change the greater the frequency shift.

1.  Transmit/Receive Antennas.  Since must operate simultaneously, must be located separately so receiving antenna doesn’t pick up transmitted signal.
2.  Oscillator or Power Amplifier.  Sends out signal to transmit antenna.  Also sends sample signal to Mixer. (used as a reference)
3.  Mixer. 
     a.  A weak sample of the transmitted RF energy is combined with the received echo signal.
     b.  The two signal will differ because of the Doppler shift.
     c.  The output of the mixer is  a function of the difference in frequencies.
4.  Amplifier.  Increases strength of signal before sending it to the indicator.
5.  Discriminator. 
    a.   Selects desired frequency bands for Doppler shifts, eliminates     
          impossible signals.
     b.  The unit will only allow certain frequency bands so won’t process stray
          signals.
6.  Indicator.  Displays data.  Displays velocity or the component directly inbound or directly outbound.  Range is not measured.
7.  Filters.  Used to reduce noise, used in amp to reduce sea return, land clutter, and other non-desirable targets.


Draw waves on the board and discuss.
1.  The basic radar  and communication transmission waves are modified to:
     a.  Allow the system to get more information out of a single transmission.
     b.  Enhance the signal processing in the receiver.
     c.  To deal with countermeasures (jamming, etc.)
     d.  Security (change characteristics)
2.  Both CW and Pulse signals can be changed or MODULATED
3.  Show slide.
4.  Common Modifications are:
     a.  AM
     b.  FM
     c.  Pulse Amplitude
     d.  Pulse Frequency
5.  Modulation is achieved by adding signals together.

The antenna is used to radiate the RF energy created by the transmitter.  It also receives the reflected energy and sends it to the receiver.  Show slide:
1.  Remember from discussion on how a RF transmission is made.
      a.  A dipole antenna  is the simplest form of RF antenna.
      b.  Optimal radiation is achieved with an antenna length of 1/2
           a wave length long or multiples thereof.
      c.  Electrical field strength is strongest in middle and least at top/bottom.
      d.  Maximum field strength is perpendicular to the antenna
      e.  Field extends 360 degrees around antenna.
2. Beam Pattern represents the electromagnetic field around antenna.
     a.  It is a snap shot at any given time.
     b.  Lines represents field strength  (in the example it is strongest on x axis)
     c.  Field goes to near zero 30-40 degrees off horizontal axis
3.  Simple antenna doesn’t help us locate a target just that he is in the cone.
     It would be a help if we could:
     a.  Illuminate a specific area (for accurate location data)
     b.  Not wasting power by looking in unwanted directions
     c.  Focus more power in the area we want to look at
4.  We improve system  performance and efficiency through manipulation of the beam’s formation.  The major way we do this is by the antenna.

1.  The size of the width of the beam (beam-width) determines the angular accuracy of the radar.  From drawing we see that the target could be any where in the beam to produce a return.  Ship B can more accurately determine where the target really is.

2.  The function of the radar determines how narrow the beam-width is needed.
      a  Search radars sacrifice accuracy for range.   (wide beam-widths at high
         power)
      b. Tracking or targeting radars require more accuracy (narrow beam-
          widths)

3.  If the target is located on the center line of the beam lobe, the return will be the strongest. 

Key Point:.   Beam-widths determine the angular accuracy of the radar.

Lead in:  Angular accuracy can be use to measure azimuth and elevation depending on which way the antenna is oriented.

1.  We get range from measuring the time the pulse takes to get from the antenna until the echo is received back.

2.  We can get angular range by measuring the antenna angle from the heading of the ship when it is pointing at the target.
     a.  Relative heading is just this angle from the ship.
     b.  For true direction this angle is added to the heading of the ship.
     (If the summation is >360 degrees subtract 360 degrees.

1.  Show slide to show that angular measurements is simple geometry to determine height.

Note:
     a.  Must adjust for the height of the radar antenna.
     b.  If the target is low and point the beam low you could get returns from
          the water surface.
  - Sea Return or “Sea Clutter”

1.. We have seen the advantages of having a strong, narrow beam.
      How do we produce the beam?
2.  Show Slide.

3.  Linear Arrays:
     a.  Work because can add waves together to get constructive or destructive
          interference.
      b.  Common types of Linear arrays include:   Broadside and Endfire
          Arrays.
      c.  Can employ Parasitic Elements direct the beam.
      d.  SPY is a phased array radar, more than 4,000 beam for const/dest
4.  Lenses:
     a.   Are like optical lenses they focus the beam through refraction of the
           energy wave.
     b.  Can only effectively be used with very high frequencies such as
          microwaves.
     c.  When you hear of a microwave horn... that is the “lens.”

1.  One of the most common Quasi-Optical Systems used to enhance the beams are reflectors.
     a.  Reflectors are just like the reflectors used in flashlights.
     b.  They make use of the reflectivity of Electromagnetic waves.
     c.  Take a simple half-wave dipole antenna  and reflect the energy into
          one large beam.

2.  Because the reflecting surface is not exact and there is some scattering, will get some smaller beams in addition to the major beam.  These are called MINOR LOBES.   The large beam is the MAJOR LOBE.

Most efficient means of conducting energy from transmitter to the antenna.
A cable would act as a short circuit if use at that high of frequency.
Hollow dialectic gas filled tube of specific dimensions.
Doesn’t work like a wire conducting current.  A totally different concept.
Can end in flared tube which transmits the energy
Should know what a wave guide is for and that if dented, crushed or punctured, it can adversely effect the performance of the system.
   
        Don’t bang on wave guides!!

Go through this slide.
See following slides for definitions of the various factors.

Signal Reception:
a.  Only a minute portion of the RF is reflected off the target.
b.  Only a fraction of that returns to the antenna.
c.  The weaker the signal that the receiver can process, the greater the effective range.
Signal-to-Noise Ratio:
a.  Noise(always present) sets the absolute lower limit of the sensitivity of the radar sets.  (At some range the noise will be greater than the echo)
b.  Noise includes atmospheric disturbances, jamming, stray signal.  Noise is inherent in the electronic circuits as random electron motion through a resister causes stray noise.
c.  To cope with this problem, the operator can set a threshold level.  If signals are below this threshold level, they will not  be displayed.
If threshold level is set too low, you get many false detections.
If set too high, could mask out real contact, (therefore, operator must compromise the gain).


These are all factors of the design of the radar receiver.

1.  Explain why only portion of the signal gets to the target  and only a fraction of that signal gets back to the receiver.

Signal-to-Noise Ratio:
     a.   Noise (always present) sets the absolute lower limit of the sensitivity of  
           the radar sets.  (At some range the noise will be greater than the echo)

Example:  Look at a cb radio.  If you turn down the volume eventual you will not hear the music only the static.  The static is noise.
     b.   Noise includes atmospheric disturbances, Jamming, stray signals. 
           Noise is inherent in electronic circuits as random electron
           motion through a resister causes stray noise.
     c.  To cope with this problem, the operator can set a threshold level.  If
          signals are below this threshold level, they will not be displayed.
              *  If threshold level is set too low - you get many false detentions.
              *  If set to high - could mask out the real contact.  Must compromise.

Receiver Bandwidth:
     a.  To create a pulse many different frequency sine waves are summed so a
          radar must combine RF energy of different frequencies.
     b.  Doppler effects also shift the frequencies so the radar must be capable of
         receiving and processing many frequencies.
     c.  The range of frequencies is the bandwidth of the receiver.
     d.  Reduce the bandwidth increases the signal-to-noise & distorts the pulse.

Receiver Sensitivity:
     a.  Defined as the smallest return signal that can produce an electrical signal
          to the indicator that is discernible against the noise background.
     b.  Sensitivity is an important factor in determining the maximum radar
          range.
     c.  Smallest discernible signal is measured in milliwatts and is referred to
         the Minimum Detectable Signal.

Pulse Shape
     a.  A pulse is made by summing several sinusoid waves of various
          frequencies.
 -  A perfect pulse (vertical leading and trailing edges requires
            the receiver to process an infinite number of sine wave freq.
 -  Internal circuit noise will also distort a pulse.
     b.  Determines the range accuracy.  (closer to vertical the better)
           Use graphic pulse to show rise time can confuse timing to get range.
     c.  Pulse shape can also effect minimum detection range.
            -  Already discussed that.  Pulse must be off before echo returns.

.  Pulse Width.
     a.  Determines range resolution and minimum detection range for same
          reasons as pulse shape.  Can’t have pulse on when the echo returns.
     b.  To lesser extent, pulse width can determine maximum range.
              -  Pulse has to be big enough to hold enough energy to travel to the
                 target and return.  
             - The bigger the pulse the more energy it can hold and the further
                away the target can be an still get a measurable return.
            -  [Power in wave is product of peak power and pulse width]
     c.  The narrower the pulse the better the range resolution
            -  This is a trade off with amount of power in the pulse and the effective maximum range of the radar.  LIMITS the range.

1.  Scan Rate and Beam Width
     a.  If have wide beam can scan area more rapidly
     b.  If small have to go slower, give target more time to get close without
          being detected.
2.  Pulse Repetition Frequency
     a.  Already talked about.  Can’t have next pulse transmitting when the
         echo from the previous one is still on the way back.
3.  Carrier Frequency
     a.  Determines antenna size and directivity of beam.
     b.  Lower Frequency the longer the distance can travel, the bigger the
          antenna required, and the more power required.
     c.  The higher the frequency the better the resolution and the ability to
          detect smaller targets.  Also the small the antenna size and the greater
          the attenuation losses.
4.  Radar cross section
     a.  Function of the target.  Reflectivity of the target.
     b   Desire good flat surfaces (perpendicular to wave) so reflect signal good,
          made of  material that doesn’t absorb RF, and is as big as a house.
This is where Stealth comes to play.  Lower the object’s radar cross section.

Low RCS!

1.  Frequency Modulated CW Radar (p. 106)
     -  Previously discussed
     -  Good for radar altimeters and missile guidance

2.  Pulse Doppler (p. 114)
     -  Can use advantages of CW and Pulse radars
     -  Can color-code the return.  Commonly used for weather radars.  In military applications, the colors can represent a target    moving away from you vice towards.
     -  The doppler shift on the return translates to a color shift in the visible spectrum.

3.  MTI (p. 112)
     -  Can be used for enhancing targets that are moving
     -  Example:  In a chaff environment, the stationary chaff can be deleted
        and the returns of the moving target identified.

4.  Frequency Agile
     -  Harder to jam.  “Frequency Jumping”


欢迎射频微波雷达通信工程师关注公众号

中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!

电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!


与我们合作,您的器件采购成本将相比原有供应商降低5%以上!!不信?那您就来试试吧!!欢迎来撩!!


电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍在特朗普政府发起的关税战中,全球芯片产业受到巨大冲击,美国芯片企业首当其冲。据报道称,英伟达本周二公布的8-K文件显示,美国政府通知该公司向中国(包括中国香港及澳门)销售尖端芯片(H20)时,需要获得美国政府的许可。文件发布后,英伟达预计会在第一季度中额外增加55亿美元的相关费用计提。随后,英伟达股价单日下跌6.9%,市值一夜蒸发约1890亿美元(约合人民币1.37万亿元)。至截稿时,至截稿时,其股价未见止跌,较前日下跌4.51%。北京时间4月17日,英伟达创始人、
    华尔街科技眼 2025-04-22 20:14 106浏览
  • 在科技飞速发展的当下,机器人领域的每一次突破都能成为大众瞩目的焦点。这不,全球首届人形机器人半程马拉松比赛刚落下帷幕,赛场上的 “小插曲” 就掀起了一阵网络热潮。4月19日,北京亦庄的赛道上热闹非凡,全球首届人形机器人半程马拉松在这里激情开跑。20支机器人队伍带着各自的“参赛选手”,踏上了这21.0975公里的挑战之路。这场比赛可不简单,它将机器人放置于真实且复杂的动态路况与环境中,对机器人在运动控制、环境感知和能源管理等方面的核心技术能力进行了全方位的检验。不仅要应对长距离带来的续航挑战,还要
    用户1742991715177 2025-04-22 20:42 96浏览
  •   复杂电磁环境模拟系统平台解析   一、系统概述   北京华盛恒辉复杂电磁环境模拟系统平台是用于还原真实战场或特定场景电磁环境的综合性技术平台。该平台借助软硬件协同运作,能够产生多源、多频段、多体制的电磁信号,并融合空间、时间、频谱等参数,构建高逼真度的电磁环境,为电子对抗、通信、雷达等系统的研发、测试、训练及评估工作提供重要支持。   应用案例   目前,已有多个复杂电磁环境模拟系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润复杂电磁环境模拟系统。这些成功案例为复杂电
    华盛恒辉l58ll334744 2025-04-23 10:29 150浏览
  • 一、技术背景与市场机遇在智能家居高速发展的今天,用户对家电设备的安全性、智能化及能效表现提出更高要求。传统取暖器因缺乏智能感知功能,存在能源浪费、安全隐患等痛点。WTL580-C01微波雷达感应模块的诞生,为取暖设备智能化升级提供了创新解决方案。该模块凭借微波雷达技术优势,在精准测距、环境适应、能耗控制等方面实现突破,成为智能取暖器领域的核心技术组件。二、核心技术原理本模块采用多普勒效应微波雷达技术,通过24GHz高频微波信号的发射-接收机制,实现毫米级动作识别和精准测距。当人体进入4-5米有效
    广州唯创电子 2025-04-23 08:41 123浏览
  • 文/Leon编辑/cc孙聪颖‍4月18日7时,2025北京亦庄半程马拉松暨人形机器人半程马拉松正式开跑。与普通的半马比赛不同,这次比赛除了有人类选手,还有21支人形机器人队伍参赛,带来了全球首次人类与机器人共同竞技的盛况。参赛队伍中,不乏明星机器人企业及机型,比如北京人形机器人创新中心的天工Ultra、松延动力的N2等。宇树G1、众擎PM01,则是由城市之间科技有限公司购置及调试,并非厂商直接参赛。考虑到机器人的适用场景和续航力各有不同,其赛制也与人类选手做出区别:每支赛队最多可安排3名参赛选手
    华尔街科技眼 2025-04-22 20:10 109浏览
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 156浏览
  •   后勤实验仿真系统平台深度解析   北京华盛恒辉后勤实验仿真系统平台依托计算机仿真技术,是对后勤保障全流程进行模拟、分析与优化的综合性工具。通过搭建虚拟场景,模拟资源调配、物资运输等环节,为后勤决策提供数据支撑,广泛应用于军事、应急管理等领域。   应用案例   目前,已有多个后勤实验仿真系统平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润后勤实验仿真系统平台。这些成功案例为后勤实验仿真系统平台的推广和应用提供了有力支持。   一、核心功能   (一)后勤资源模拟
    华盛恒辉l58ll334744 2025-04-23 15:39 111浏览
  • 故障现象一辆2016款奔驰C200L车,搭载274 920发动机,累计行驶里程约为13万km。该车组合仪表上的防侧滑故障灯、转向助力故障灯、安全气囊故障灯等偶尔异常点亮,且此时将挡位置于R挡,中控显示屏提示“后视摄像头不可用”,无法显示倒车影像。 故障诊断用故障检测仪检测,发现多个控制单元中均存储有通信类故障代码(图1),其中故障代码“U015587 与仪表盘的通信存在故障。信息缺失”出现的频次较高。 图1 存储的故障代码1而组合仪表中存储有故障代码“U006488 与用户界
    虹科Pico汽车示波器 2025-04-23 11:22 77浏览
  • 一、行业背景与市场需求高血压作为全球发病率最高的慢性病之一,其早期监测与管理已成为公共卫生领域的重要课题。世界卫生组织数据显示,全球超13亿人受高血压困扰,且患者群体呈现年轻化趋势。传统血压计因功能单一、数据孤立等缺陷,难以满足现代健康管理的需求。在此背景下,集语音播报、蓝牙传输、电量检测于一体的智能血压计应运而生,通过技术创新实现“测量-分析-管理”全流程智能化,成为慢性病管理的核心终端设备。二、技术架构与核心功能智能血压计以电子血压测量技术为基础,融合物联网、AI算法及语音交互技术,构建起多
    广州唯创电子 2025-04-23 09:06 137浏览
  •   电磁频谱数据综合管理平台系统解析   一、系统定义与目标   北京华盛恒辉电磁频谱数据综合管理平台融合无线传感器、软件定义电台等前沿技术,是实现无线电频谱资源全流程管理的复杂系统。其核心目标包括:优化频谱资源配置,满足多元通信需求;运用动态管理与频谱共享技术,提升资源利用效率;强化频谱安全监管,杜绝非法占用与干扰;为电子战提供频谱监测分析支持,辅助作战决策。   应用案例   目前,已有多个电磁频谱数据综合管理平台在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁频谱数
    华盛恒辉l58ll334744 2025-04-23 16:27 142浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 148浏览
  •   无人机结构仿真与部件拆解分析系统平台解析   北京华盛恒辉无人机结构仿真与部件拆解分析系统无人机技术快速发展的当下,结构仿真与部件拆解分析系统平台成为无人机研发测试的核心工具,在优化设计、提升性能、降低成本等方面发挥关键作用。以下从功能、架构、应用、优势及趋势展开解析。   应用案例   目前,已有多个无人机结构仿真与部件拆解分析系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机结构仿真与部件拆解分析系统。这些成功案例为无人机结构仿真与部件拆解分析系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-23 15:00 148浏览
  •   陆地边防事件紧急处置系统平台解析   北京华盛恒辉陆地边防事件紧急处置系统平台是整合监测、预警、指挥等功能的智能化综合系统,致力于增强边防安全管控能力,快速响应各类突发事件。以下从系统架构、核心功能、技术支撑、应用场景及发展趋势展开全面解读。   应用案例   目前,已有多个陆地边防事件紧急处置系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润陆地边防事件紧急处置系统。这些成功案例为陆地边防事件紧急处置系统的推广和应用提供了有力支持。   一、系统架构   感知层:部
    华盛恒辉l58ll334744 2025-04-23 11:22 110浏览
  • 前言本文主要演示基于TL3576-MiniEVM评估板HDMI OUT、DP 1.4和MIPI的多屏同显、异显方案,适用开发环境如下。Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:VMware16.2.5、Ubuntu22.04.5 64bitU-Boot:U-Boot-2017.09Kernel:Linux-6.1.115LinuxSDK:LinuxSDK-[版本号](基于rk3576_linux6.1_release_v
    Tronlong 2025-04-23 13:59 97浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦