谈谈ADC过采样

摩尔学堂 2024-06-13 15:10

在大多数情况下,10位的分辨率就足够了。但在某些情况下需要更高的精度。采用特殊的信号处理技术可以提高测量的分辨率。通过使用一种称为“过采样和抽取”的方法,可以实现更高的分辨率,而不使用外部ADC。此应用程序说明说明了该方法,以及需要满足哪些条件才能使该方法正常工作。

下面的例子和数字是为自由运行模式下的单端输入计算的。没有使用ADC降噪模式。这种方法在其他模式中也是有效的,尽管下面例子中的数字会有所不同。ADC参考电压和ADC分辨率定义ADC步长。ADC的参考电压VREF可以选择为内部2.56V / 1.1V的参考电压AVCC或AREF引脚的参考电压。较低的VREE提供较高的电压精度,但最小化了输入信号的动态范围。如果选择2.56V VREE,则在转换结果上给用户-2.5mV的精度,被测的最高输入电压为2.56V。或者,可以考虑使用ADC输入通道与增益级。这将给用户以ADCs动态范围为代价,以更好的电压精度测量模拟信号的可能性。如果用动态范围来换取更好的电压分辨率是不可接受的,可以选择用信号的过采样来换取更好的分辨率。但该方法受到ADC特性的限制:使用过采样和抽取只会降低ADC的量化误差,而不能补偿ADC的积分非逼近性。

尼奎斯特定理指出,采样信号的速度必须至少是信号带宽的两倍,才能精确地重构波形;否则,高频内容将在感兴趣的频谱(通带)内的频率混叠。根据奈奎斯特定理,所需的最小采样频率为奈奎斯特频率。

其中fsianal为输入信号中感兴趣的最高频率。fnvauist以上的采样频率称为“过采样”。然而,这个采样频率,只是一个理论上的绝对最小采样频率。在实践中,用户通常希望得到尽可能高的采样频率,以便在时域中得到被测信号的最佳表示。可以说在大多数情况下输入信号已经被过采样了采样频率是CPU时钟预调的结果;较低的预压因子可得到较高的ADC时钟频率。在某一时刻,较高的ADC时钟会随着有效位元数(ENOB)的减少而降低转换的精度。所有的ADC都有带宽限制,mcu ADC也不例外。根据数据表,要得到一个10位分辨率的转换结果,ADC时钟频率应该是50kHz -200kHz。当ADC时钟为200kHz时,采样频率为~15kSPS,限制了被采样信号的上频率为~7.5kHz。根据数据表,ADC时钟可以驱动频率高达1Mhz,尽管这将降低ENOB

“过采样和抽取”背后的理论是相当复杂的,但使用这种方法是相当容易的。这项技术需要更多的样品。这些额外的采样可以通过对信号进行过采样来实现。对于每增加一比特的分辨率n,信号必须被过采样四次。对输入信号采样的频率由下面公式给出。为了得到模拟输入信号的最佳可能的表示,有必要将信号过采样这么多,因为在平均时,更大数量的样本会给输入信号更好的表示。这将被认为是本应用说明的主要成分,并将通过下面的理论和例子进一步解释。

要使此方法正常工作,感兴趣的信号组件不应该在转换期间发生变化。然而,成功增强分辨率的另一个标准是输入信号在采样时必须有所变化。这看起来可能有些矛盾,但在这种情况下,变体仅意味着少量LSB。这种变化应该被看作是信号的噪声成分。当信号过采样时,必须存在噪声以满足信号微小变化的要求。ADC的量化误差至少为0.5LSB。因此,噪声振幅必须超过0.5 LSB才能切换LSB。1-2 LSB的噪声幅值更好,因为这将确保多个样本最终不会得到相同的值。噪声的标准,当使用抽取技术:

在转换期间,感兴趣的信号组件不应发生显著变化。

信号中应该存在一些噪声。

噪声的振幅应至少为1 LSB。

通常在转换过程中会出现一些噪声。噪声可以是热噪声,来自CPU核心的噪声,I/ o端口的切换,电源的变化等。这种噪音在大多数情况下足以使这种方法工作。但在特定情况下,可能需要在输入信号中添加一些人工噪声。这种方法称为抖动。下图A显示了测量电压值介于两个量化步骤之间的信号的问题。对四个样本进行平均是没有用的,因为结果将是相同的低值。它可能只有助于减弱信号的波动。图B显示,在输入信号中加入一些人工噪声,转换结果的LSB会发生切换。增加四个这样的样本一半量化步骤,产生的结果给出了更好的输入值表示,如图C所示。adc的虚拟分辨率从10位增加到11位。这种方法称为抽取,将在下面进一步说明

使用这种方法的另一个原因是为了提高信噪比。提高有效位元数(ENOB)将使噪声扩散到更大的二进制数上。噪声对每个二进制数字的影响减小。将采样频率加倍可以将带内噪声降低3dB,并将测量的分辨率提高0.5位。

均值的传统意义是将m个样本相加,然后除以m,称为正态均值。平均ADC测量的数据相当于一个低通滤波器,具有衰减信号波动或噪声,平坦输入信号中的峰值的优点。移动平均法经常被用来做这个。这意味着取m个读入值,将它们放入一个循环队列中,然后对最近的m个读入值进行平均。这将会有一点时间延迟,因为每个样本都是最后m个样本的表示。这可以在窗口重叠或不重叠的情况下完成。下面显示7 (Av1-Av7),独立移动平均结果,不重叠。

重要的是要记住,正常平均不会增加转换的分辨率。抽取,或插值,是平均方法,结合过采样,以提高分辨率。对信号进行过采样和低通滤波器的数字信号处理通常称为插值。在这个意义上,插值被用来产生新的样本,作为一个“平均”更大数量的样本。平均样本数越高,低通滤波器的选择性越强,插值效果越好。通过对信号进行过采样得到的额外样本m被加起来,就像在日常取平均值中一样,但结果不像在日常平均值中一样除以m。相反,结果是向右移动n,其中n是想要的额外的分辨率位,以缩放正确的答案。向右移动二进制数一次等于二进制数除以2。从上面说到过的公式可以看出,将分辨率从10位增加到12位需要16个10位值的总和。16个10位值的和生成一个14位的结果,其中最后两位不期望包含有价值的信息。为了回到12位,有必要衡量结果。由式下图给出的标度因子sf是4个样本的和要除以的因子,以适当地标度结果。n是所需的额外比特数。

通常一个信号包含一些噪声,这种噪声通常具有高斯噪声的特征,通常称为白噪声或热噪声,被广泛的频谱识别,总能量在整个频率范围内平均分配。在这些情况下,“过采样和抽取”的方法将工作,如果噪声的振幅足以切换ADC转换的LSB在其他情况下,可能需要在输入信号中加入人工噪声信号,这种方法称为抖动。这种噪声的波形应该是高斯噪声,但周期波形也可以工作。这个噪声信号的频率取决于采样频率。经验法则是:“添加m个样本时,噪声信号的周期不应超过m个样本的周期”。噪声的振幅应至少为1 LSB。在给信号添加人工噪声时,要记住噪声的平均值为零;过采样不足因此可能会造成偏移,如下图所示

点画线说明了锯齿信号的平均值。图A将引起一个负偏移。B将导致正偏移。在图C采样充分,避免偏移。为了制造人工噪声信号,可以使用计数器。由于计数器和ADC使用相同的锁源,这就提供了同步噪声和采样频率以避免偏移的可能性。

都柏林的一位酿酒大师想要测量他的酿酒厂的温度。一个缓慢变化的信号表示温度测量,其环境温度的标称电压为2.5 V。下图显示了该测温装置的特性。

主机不想将输入信号的动态范围最小化,选择了一个5V的ADC参考电压。在这种情况下,10位ADC不能提供足够精确的转换结果。因为结果的LSB表示一个-5mV的'step'。这是不可接受的,因为这会导致结果可能高达0.25℃的偏差。酿造主希望结果有0.1℃的精度,这要求电压分辨率低于2mV。如果测量用12位ADC表示,表示LSB的电压“step”将下降到~1.22mV。主机需要做的是将10位ADC转换为虚拟的12位ADO,输入信号变化非常缓慢;因此,不需要很高的采样频率。根据数据表,ADC时钟频率应在50kHz - 200kHz之间,以确保10位的有效分辨率。因此50kHz ADC时钟频率。然后采样频率变成-3800 SPS。在某一点,代表测量温度的直流值为2.4729V。下表给出了Vin=2.4729V和VREF= 5V时测量该值的不同分辨率选项。

一次转换的结果是505,乍一看似乎是正确的。但是这个二进制数也对应于例如2。4683v。这使得用户不确定,并导致温度测量中的错误。在某些情况下,这可能是至关重要的。得出结论之前;信号通常包含足够的噪声,使抽取方法可行。

为了增加1位的分辨率,从相同的“邻域”添加了四个样本。由于噪声的影响,这些样本的值之间存在一些LSB值的差异。添加四个样品:508+ 507 + 505 + 505 = 2025。根据抽取原理,答案现在需要缩小到11位。它需要右移n次,n是额外的比特数。结果是1012。提高分辨率后,突然之间就有可能实现原始量化步骤之间的采样。尽管如此,信号被过度采样以进一步提高分辨率,达到12位。添加16个10位的样本并右移结果2次就可以做到这一点。结果是2025年。这个数字更可靠,因为使用一个12位的结果,误差范围减少到~1.22mV。这个例子表明,开始时信号是慢变的,每秒采样3800 imes,电压精度为~5mV,现在每秒采样240个,分辨率为12位,电压精度为~1.22mV。

用户可能仍然希望通过平均16个12位样本(传统方法)来平衡信号波动。方法是将16个样本相加,然后除以16。最后,用户有15个SPS,平均16个12位相邻样本。

正常平均将减少随机噪声的后果,“过采样和抽取”将利用噪声来提高分辨率。

为了证明该方法的有效性,下面的例子将表明,不必使用外部ADC来获得更高的精度。信号发生器用于产生从OV到5V的线性斜坡信号。在“低噪音”环境中,信号发生器和控制器插在STK500板中,可能没有足够的噪音切换10位信号的最后几个位。因此有必要在输入信号中加入人为的“噪声”,使LSB开关。成功使用了四种方法:

将信号发生器产生的噪声直接加到输入信号上。用单片机产生噪声,使用PWM,并将其添加到输入信号当使用AVCC作为VREF时,添加由单片机生成的噪声到AREF当使用AREF作为VREF时,添加由mcu生成的噪声到AREF。

当VCC =5V时,滤波后的AREF引脚信号在计数器脉宽为0%时为2.5V,在计数器脉宽为100%时为5V。本例中pwm信号占空比为50%,基频为~3900Hz。10kS电位器是用来调整这种纹波。该PWM-信号要么作为参考电压的ADC在AREF,或作为噪声发生器连接到AREF引脚。设AVCC为ADC参考电压。其思想是,在不干扰输入信号的情况下,参考电压的微小变化将产生与输入信号的微小变化相同的效果。

下图显示了当AREF为ADC参考电压时输入信号的12位离散表示,并且AREF加了一些LSB噪声。上面的公式,每个12位结果由16个10位样本组成。对ADC偏移量进行调整,根据应用说明,增益误差也需要调整。以下图片显示了输入信号的14位离散表示,以下图片显示了输入信号的16位离散表示。测量信号含有噪声时,或者当参考电压变化在这个例子中,重要的是要记住,顶部和底部值减少了相同的值作为噪声信号的振幅,给予轻微的减少被测信号的动态范围。在这种情况下,作为安全余量,偏移量被调整为100mV。

我们可以很容易地看到,通过使用过采样和抽取方法,有可能大大提高分辨率。

当ADC采样一个信号时,它对信号进行离散量化。这就引入了一些误差,通常称为量化误差。正常平均只会均匀信号波动,而抽取会增加分辨率。在一个4。时间过采样信号,四个相邻数据点的平均值产生nev数据点。信号过采样的频率可由公式上面说过的公式计算。加上这些额外的样本,然后将结果右移一个因子n。产生分辨率增加n位的结果。平均四个模数转换器的结果得到一个新的模数转换器的结果是相同的,如果模数转换器采样率为14,但也有平均量化噪声的效果,提高信噪比。这将增加ENOB,减少量化误差。随着更快的adc的可用性和低内存成本,过采样的优点是经济有效和可取的。

信号中必须存在一些噪声,至少1 LSB。

如果噪声幅度不够大,就给信号加噪声。

积累4个10位的样本,其中n是在分辨率中需要的额外比特数。

对累积的结果进行缩放,右移n次。

根据应用说明MCU补偿错误。

看一下程序  此处ADC为10bit

#pragma vector=ADC_vect

__interrupt void ADCinterrupt(void)

{

  accumulator += ADC;//adc合   double

  samples++;//采样计数   short

}

在这里进行采样和记录采样的次数

主要流程为

  while(1)                             // Eternal loop

  {

    if(samples>4095)//如果到了过采样的临界点

      {

        oversampled();              //进行相应的过采样计算

      }

  }

void oversampled(void)

{

  __disable_interrupt();

  accumulator += 5150;                 // 抵消误差补偿  这里可以用最小二乘法校正

  accumulator *= 0.9993;               // 增益误差补偿

  temp=(int)accumulator%64;      //做四舍五入

  accumulator/=64;                     // 舍弃掉没用 这里除掉的是2的6次方,增加几位就是几次方

  if(temp>=32)

    {

      accumulator += 1;                

    }

  Vin = (accumulator/65536)*4.910;   //计算实际电压值

  samples     = 0;            

  accumulator = 0;            

  __enable_interrupt(); 

————————————————

作者:迁旭@CSDN博客



6月20日-21日将在上海举办一期高级电源管理芯片设计课程,本课程将讲述电源管理电路中最常见的模块LDO和DC-DC的相关知识、设计技巧和前沿揭秘,包括模拟LDO,数字LDO,电感型DC-DC,电容型DC-DC和最近关注度很高的混合型DC-DC。

--点击图片即转至课程页面




7月16日-17日将在上海举办一期高级数模转换器(ADC)课程,本次课程首先深入探讨大规模时间交织 ADC 的交织器拓扑结构,探讨非理想情况、设计注意事项、建模技术和详细案例研究。随后,特别关注对高性能大规模 TI ADC 至关重要的外设块的设计挑战和解决方案,包括输入缓冲器和参考缓冲器。此外,还研究了极限采样器、残差放大器和时钟等关键 SAR ADC 块,通过全面的案例研究介绍了基本概念和先进技术。


--------------------------------------------------------------

今天小编带来了:ISSCC2024套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2024完整资料领取方式如下   

识别关注下方公众号
公众号对话框输入 2024 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 149浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦