文献赏析:机械约束下锂离子电池多场耦合的表征和量化

锂电联盟会长 2024-06-12 12:30

点击左上角“锂电联盟会长”,即可关注!

第一作者:Xue Cai
通讯作者:Caiping Zhang, Weihan Li
通讯单位:北京交通大学,德国亚琛工业大学
使用设备:元能科技SWE2110(1T常温膨胀测试系统)

01 研究背景
随着电动汽车和电化学储能的广泛应用,锂离子电池因其高能量密度、成本效益和长寿命而备受关注。然而,锂离子电池在发生电化学反应的同时会产生膨胀力和热量,尤其是在组装和叠压等机械限制条件下,从而形成电化学-热-机械的多场耦合行为。表征和量化多场耦合行为需要跨学科的努力。但由于测量的局限性和耦合的复杂性,理解错综复杂的多场行为具有两方面的挑战性。一是:虽然现有的测试平台提供了用于研究电池机械响应和多场耦合行为的实验手段,但这些平台各有优缺点,另一个是错综复杂的多场耦合行为因其高度非线性相互作用关系还未被充分地解耦分析。因此,本文综合利用不同机械约束平台的优势,开发了原位定量分析方法,以揭示多场耦合的作用机制,量化不同物理场之间的关联性和耦合强度。这些研究成果将为优化结构设计和改善电池性能提供重要依据。

02 工作简介

近日,北京交通大学联合德国亚琛工业大学团队设计了一系列机械约束实验, 其中包括自由膨胀(图1(a)),恒位移(图1(b))和元能科技SWE2110恒压力模式(图1(c)),并引入了原位分析框架,以阐明多物理场之间复杂的相互作用机制和耦合度。所提出的分析框架整合了等效模型参数化、原位力学分析和耦合行为的定量评估。结果表明,在低温条件下,压力对阻抗的显著影响主要来自扩散控制步骤,并通过施加外部压力(如 10 °C 时的 180 至 240 kPa)以改善电池的动力学性能。电化学反应控制步骤的多样性说明了压力在不同温度下对电池性能的不同影响。热膨胀率表明,在充电过程中,升高每单位温度下膨胀力变化小于1.60%。通过引入复合评价指标,我们量化了特征参数和物理场之间的耦合相关性和强度,发现了电化学-热场之间的最高耦合度。这些结果凸显了分析方法在揭示多场相互作用机制方面的潜力,其目标是提高电池性能和优化结构设计。

03 内容表述
锂离子电池涉及不同学科和非线性耦合行为,分析多场问题显然是错综复杂的。在本研究中,我们提出了图 1 所示的原位定量分析框架,旨在全面解决这些复杂的非线性耦合分析问题。针对机械约束下无法测量的电池温度,我们结合三个机械平台,精心设计了一个综合实验矩阵,为多场模型参数化和机械特性曲线分析提供数据支持。首先,为了定量评估不同场之间错综复杂的相互作用,我们使用等效电路、机械和热模型对耦合行为进行了可视化和参数化(图1(d)),这为直观量化特征参数与物理场之间的多场耦合提供了重要依据。虽然热效应对机械行为的影响是通过单向耦合方法来探索的,但其他物理场之间的相互作用则需要采用双向耦合策略。随后,为了进一步研究温度和压力对机械行为的影响,我们开发了一种使用差分电压和膨胀分析的原位机械表征方法(图1(e))。通过这种方法,我们可以将膨胀峰与特定的相变相关联,从而探索机械行为变化的电化学特性。此外,我们还引入了一种综合指标,将最大信息系数 (MIC) 和最大速率变化 (MRC) 结合起来,以定量评估特征参数与物理场之间的耦合相关性和强度(图1(f))。本研究强调了这一框架在指导多场耦合问题的实验设计,以消除相互作用,并创建专门应对多场耦合挑战的模型。
图1.基于机械约束平台所提出的原位定量分析架构
为进一步揭示电池外部性能变化的内部电化学机理,图2显示了不同温度下电池热力学和动力学参数随外部压力变化的情况。活性材料颗粒的热膨胀会促进颗粒、粘结剂和导电材料之间的紧密连接。由于不存在空隙,这导致电子阻抗在压力增加时保持不变。相反,在 10 °C时,这些连接松散的微粒会因真空的消除而导致电子阻抗随压力增加而减小。在这种情况下,应力引起的电子阻抗变化明显大于锂离子阻抗,这表明25 ℃和10 ℃ 下的加压细胞增强了各组分之间的接触状态。在图 2(d 和 e)中,可以观察到在所有温度下,随着压力的增加,界面阻抗参数:Rinterf 会减小,Cinterf 会增大。这表明,活性材料颗粒的表面积随施加的压力而增加,但在 40 ° C 时超过 100 kPa 时表面积会减小,而在 20% SOC 时则小于 50 kPa,这是因为机械损伤(如颗粒嵌入集流器或二次颗粒融合)导致活性材料表面积减小[54]。因此,考虑到整个 SOC 范围,活性表面积最大化(即界面阻抗最小化)的最佳压力集中在 40 °C 时 50 至 100 kPa、25 °C 时 100 kPa 和 10 °C 时 240 kPa 的范围内,这为缓冲层支撑电池的长寿命运行提供了有力的理论依据。在图 2(f-h)中,低频阻抗由电解质和活性颗粒内部的离子扩散组成。由于孔隙率降低,扩散阻抗Rd,1 在 25 和 40 °C 时随应力增加,而在 10 °C 时则下降,这因于 10 °C 时的扩散系数与应力引起的电解质粘度甚至凝固之间的相关性,这意味着在低温条件下,压力对电池阻抗性能的影响非常明显。液相扩散是低温性能的关键控制步骤[56],有助于通过施加外部压力改善动力学。根据电池电化学原理,电化学反应控制步骤的变化可有效解释不同温度下的不同效应。压力诱导的动力学演变机制和热力学中电极容量的变化规律,揭示了10 °C下通过施加压力使得电池1.5C容量增加和极化电压下降的本质原因来源于压力诱导扩散控制步骤。
图2.(a) EIS 的奈奎斯特图。(b) 压力对电化学特性的影响示意图。在低堆叠应力条件下,从初始值(R0)算起的电阻是通过比较计算得出的。(c) 欧姆电阻。(d) 表面电阻。(e) 表面间电容。(f) 电解质扩散阻力和 (g) 电容。(h) 其他扩散阻力。应力引起的热力学参数。热力学参数包括 (i) 负极和 (j) 正极的初始锂化状态,(k) 负极和 (l) 正极容量
图 3(b)中的电池热膨胀力 TEPc 与温度呈线性相关,热膨胀系数αTEP 随 SOC 的增加而增加,范围为 0.70 至 0.87 kPa/°C。为了分析热膨胀应力的大小,我们提出了一个新参数 λTEP 来表示 25 °C 时 αTEP与嵌锂所诱导膨胀力Δσs 的比值。λTEP 的变化小于1.60%,表明 10 °C 的 TR 导致的压力变化小于 16%。图3(b)表明当电极层之间的间隙被填充到 25 °C以上时,电池的热膨胀随温度线性增减。然而,在 20% SOC 时观察到了与热膨胀位移 TED和 TEP相反的趋势,这表明由于电极之间接触状态的不同,机械限制可能会导致不同的实验结果。此外,为了进一步分析实际电池运行中的热膨胀程度及其与 SOC 的相关性,我们设计了产生或不产温升 TR 的 1 C 充电和 1.5 C 放电膨胀试验。如图 3(c 和 d)所示,充电结束时 2.28% 的 TR 导致膨胀增加 2.16%,而放电结束时 1.21% 的 TR 导致膨胀减少 4.34%。这些结论为理解热机械耦合行为提供了基础,并阐明了在机械限制条件下进行实验设计的必要性。
图3.热膨胀特性分析。(a) 组合夹具和传感器的热膨胀压力。(b) 电池在 20%、50% 和 80% SOC 时的热膨胀压力和位移。(c) 1 C 充电和(d) 1.5 C 放电时,有TR和无TR的温度和膨胀厚度变化。
在多场耦合问题中,由于耦合关系的复杂性和多样性,必须进一步量化两个场之间的相关性和依赖性程度。图 4(a)至(d)显示了特征参数与温度T 和压力σ等物理场之间的归一化MIC和 MRC。在图 11(a)中,除Q+max外,所有电化学参数的温度相关性都大于 0.6 Temp@MIC,但机械参数与温度的相关性最弱。在图 11 (c) 中,一个有趣的现象是所有机械参数都与压力高度相关,而压力与电化学参数之间的 Pres@MIC 却小于 0.6。虽然基于 MIC 的相关性评估表明这两个领域之间存在某种联系,但其相互作用的程度尚未确定,而这正是评估电池性能可靠性和估算算法鲁棒性的关键。对于耦合强度分析,如图 11(b)所示,Temp@MRC 的温度诱导特征参数表明改善电解液的温度特性和固液反应界面的活性面积是提高电池容量和功率性能的有效途径。Pres@MRC的压力诱导的机械参数表明Δδ 具有较低的温度和压力灵敏度,而 Δσ 则具有较高的压力灵敏度和适中的温度灵敏度。在实际应用中,压力信号比精度低的应变传感器更容易获得。因此,建立以压力为输入、应变为输出的高精度机械模型更为合理,有助于实现电池早期故障的在线诊断。在电池运行过程中,电池的热电耦合比其他两场耦合更为强烈。这一结论有助于设计解耦实验和开发多场耦合建模方法,从而确保电动汽车实际运行过程中 BMS 功能的可靠性。
图4.(a) 温度诱导参数的归一化 MIC 和 (b) MRC。(c,d)压力诱导参数。参数分为三类:电化学参数、机械参数和热参数。

04 总结与展望
本文提出了机械约束实验与原位定量框架相结合的分析框架。在三种机械约束条件下直接测量了多物理场信号,从而创建了一个全面的表征数据集以揭示多场耦合机制,分离 SOC、温度和压力对机械行为的影响,并量化多物理场之间的耦合度。结果表明,耦合行为与电池电化学特性密切相关。由于关键控制步骤的改变,温度导致了不同程度的压力诱导阻抗的变化以及不同的发热和性能改善效果。与活性表面积密切相关的界面阻抗的变化进一步证明了最佳压力范围与温度的关系, 例如10 ℃ 时 180 至 240 kPa,25 ℃ 时 100 至 150 kPa,40 ℃ 时 50 至 100 kPa。在 20% SOC 的热诱导机械行为中,由于弹性模量随温度升高而增加,机械约束导致了不同程度的热膨胀。在充电过程中,升高每单位温度将产生 1.60% 的膨胀力。通过MIC和MRC的量化结果表明,电化学参数与温度的相关性很高,而机械参数与压力的相关性很强。所有电化学参数对温度的敏感性远高于压力,这表明电化学-热场的耦合度最高。
这项工作凸显了分析程序在可视化和量化多场耦合方面的潜力,为耦合相互作用机制提供了更深入的见解,并为多场模拟提供了解决方案。这些进展将不可避免地指导电池性能的提高和优化结构设计。




X. Cai, C. Zhang, Z. Chen, L. Zhang, D. Uwe Sauer, W. Li, Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints, Journal of Energy Chemistry (2024), doi: https://doi.org/10.1016/j.jechem.2024.03.048




蔡雪

北京交通大学电气工程学院博士研究生,德国亚琛工业大学联合培养博士研究生。研究方向为机械压力下动力/储能电池性能优化设计和安全管理技术研究。

张彩萍

北京交通大学电气工程学院教授、智能交通绿色低碳技术教育部工程研究中心副主任。长期从事动力/储能电池优化控制与安全管理技术研究,主持多项国家自然科学基金项、国家重点研发计划项目课题。发表SCI期刊论文70余篇,获国家科技进步二等奖、教育部科学技术发明一等奖、国家自然科学优秀青年基金。

Weihan Li

亚琛工业大学 “电池人工智能” 青年研究团队负责人。于2021年与2017年分别获得亚琛工业大学电气工程与信息技术博士学位与汽车工程硕士学位。曾在伦敦帝国理工学院、牛津大学、麻省理工学院、德国大众集团和德国保时捷集团从事研究工作,并获得多项奖项,包括德国联邦教育与研究部的BattFutur Starting Grant、德国埃尔福特科学院的Reichart Prize、德国vgbe基金会创新奖、欧盟电池青年研究奖以及亚琛工业大学创新奖等。

laiyuan

来源:元能科技
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 480浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 70浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 322浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 69浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 143浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 157浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 53浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 213浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 315浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 63浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 584浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦