如何排查CANFD总线错误帧?

原创 汽车电子与软件 2024-06-12 07:57


作者 | 窦明佳

出品 | 汽车电子与软件



最近样车调试遇到了一个CANFD总线错误帧的问题,排查了很长时间,且其故障原因为首次遇到,特在此记录并分享给大家,希望能够对后续遇到同样问题的同行有所帮助。



#01
问题描述



该控制器在装车之前已在供应商进行过零部件网络通讯测试相关工作(包括位时间测试、信号发送电平测试、信号上升沿河下降沿测试、信号发送对称性测试等),单节点收发报文都是正常的,但是在接入整车CANFD网络后会引起总线大量的错误帧,拔掉该节点后网络通讯正常,因此初步判定总线错误帧是由该节点一起的。




#02

问题排查


2.1 线束排查

Ø线束引脚确认:首先确认该控制器的线束端引脚定义是否与控制器端匹配一致,以排除总线CAN_H、CAN_L引脚短接到电源、地以及其他引脚的可能,经过控制器图纸与线束图纸的核对,以及CAN_H、CAN_L对地电压的测量,确认线束设计正确;

Ø终端电阻确认:车辆断电,通过OBD口测量该CANFD网络终端电阻60.2Ω,确认终端电阻正常;


2.2 总线接口电路排查


排查该控制器的接口电路与ISO11898标准规定的一致。


但是根据CANFD总线拓扑设计要求,该控制器到主干网的分支长度L1需小于0.1m,因为控制器布置及线束设计原因,现场排查该控制器分支长度远大于0.1m,按照标准要求需增加1.3KΩ的支线终端电阻,因此按照要求更换R1+R2电阻为1.3KΩ;按照上述要求更改支线终端电阻后再次接入整车CANFD网络测试,错误帧依旧,未明显改善。


 
2.3 采样点确认

根据ISO11898标准中位定时参数的定义,仲裁域波特率500kbps,数据域波特率2Mbps的CANFD总线,采样点设置应该在75%——82%,现场更改波特率设置从最小75%逐步增加到82%,现场测试错误帧依旧。




#03

分析真因


经过上述总线错误帧问题基本方法的排查后,仍未找到问题的原因,此时我们从头开始梳理问题,并对前期进行的测试进行对比;

3.1 确定错误类型


首先对CANoe采集的错误帧进行初步分析,接入该控制器后总线大量的错误帧,基本阻塞了正常节点的报文发送,且错误帧基本全是“Stuff Error Bit Position=24/28”。


 

同是每个错误帧中报文的ID都是正常发送的(ID 0x319),且其错误出现在数据段(Phase=Data),错误状态指示器(ESI)=“1”被动错误(ESI默认为显性0),通过示波器采集总线CAN_H、CAN_L以及差分电压分析错误帧很规律的出现在数据段的bit24或28,初步认为错误类型为“位错误”,而非其他错误,如ACK错误、填充错误、CRC错误、格式错误等。


 
3.2 确定错误原因


针对“位错误”(Bit Check Error)一般是控制器将自己发送的到总线上的电平与同时从总线上回读的电平进行比较,如果发现二者不一致,那么这个节点就会检测出一个位错误,并向总线发送错误帧,并在发送错误计数器TEC和接收错误计数器小于127时将错误状态指示器ESI置位“1”,分析引起“位错误”的可能原因:

Ø可能原因1:总线阻抗、容抗不匹配,总线抗干扰能力弱,EMC干扰引起总线电平反转,结合实车测试,出现位错误的地方很规律,不像EMC干扰引起的位错误具有随机性,初步排除EMC干扰引起;

Ø可能原因2:采样点不对,上面已进行过相关的更改测试,并无明显改善;

Ø可能原因3:发送延迟补偿(TDC)不正确,从而导致控制器回读总线电平的时间点不对,引起“位错误”;



通过对原因3中的发送延迟补偿(TDCO)按照标准进行更改,重新接入整车网络测试故障消除,CANFD网络无错误帧,将其他几台份的控制器按照上述措施更改后,接入整车网络测试都无错误帧。



#04
发送延迟补偿TDC

4.1 为什么存在发送延迟



CAN控器发送信号时,是经过CAN收发器发往CAN总线后,再经过CAN收发器反馈总线信号,控制器发送位信号和回读位信号就会存在时间延迟,在CANFD中,数据段的波特率是比CAN高的(波特率开关BRS=“1”),波特率越高,位宽越小,在发送报文时延迟影响越大,越容易产生“位错误”,在传统的CAN协议中规定的最高波特率为1Mbps,即位宽1us,正常情况下,传输延迟不会超过位宽的采样点(这取决于收发器环路的延迟,传输距离、传输线缆质量等),因此不会因为发送延迟而产生错误,但在CANFD网络中就需要注意该参数;


4.2 发送延迟补偿的原理


由于发送延迟补偿无法避免,此时就需要一种机制来保证发送与接收的位对应上,以避免产生“位错误”,这种机制就叫做“发送延迟补偿”,其原理就是控制器节点在发送完Bit位一定时间后,在第二采样点采集接收位,以正确采样到发送位对应的接收位,那么延迟采样的时间怎么设定呢?实际上在控制器设置中开启TDC后,控制器将自动测量Tx信号线上FDF位到r0位下降沿与Rx信号线上FDF位到r0位边沿之间的时间差,从而确定发送延迟测量时间TDCV,发送延迟测量的时间单位为CAN控制器时钟(Tq);



在达到延迟时间后,控制器此时需要采样接收位,该采样点成为第二采样点(SSP-Second Sample Point)以区别未延迟之前的采样点SP,SSP等于测量延迟TDCV+发送延迟补偿偏移TDCO(TDC Offset),通常TDCO配置的与第一个采样点一致,即(PROP+TSEG1)*DBRP,在CANFD网络中当采用点设置为80%时,对应的TDCO为400ns;芯片会自动计算二次采样点SSP的位置=TDCV+TDCO。



#05

总结



为了CANFD总线网络正常通信,首先网络上各个节点一定要首先进行单节点的物理层测试(包括总线电压、终端电阻、信号跳变沿、地偏移、通信电压范围等测试)、数据链路层测试(位时间、采样点、帧格式等测试)以及应用层测试(报文周期、报文类型、BusOff恢复策略等),然后在整车集成测试时,在功能调试之前对整车网络的通讯进行测试,保证所有节点在线并正常收发报文,在此过程中会遇到各种引起无法正常通信的问题,需要从装配、供电、线束、硬件电路、软件配置等各角度逐步分析排查,希望上述总线问题的排查记录能够对其他同行有所帮助。



/ END /


汽车电子与软件 主要介绍汽车电子软件设计相关内容,每天分享一篇技术文章!
评论 (0)
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 186浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 118浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 143浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 293浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 77浏览
  • 2024年初,OpenAI公布的Sora AI视频生成模型,震撼了国产大模型行业。随后国产厂商集体发力视频大模型,快手发布视频生成大模型可灵,字节跳动发布豆包视频生成模型,正式打响了国内AI视频生成领域第一枪。众多企业匆忙入局,只为在这片新兴市场中抢占先机,却往往忽视了技术成熟度与应用规范的打磨。以社交平台上泛滥的 AI 伪造视频为例,全红婵家人被恶意仿冒博流量卖货,明星们也纷纷中招,刘晓庆、张馨予等均曾反馈有人在视频号上通过AI生成视频假冒她。这些伪造视频不仅严重侵犯他人权
    用户1742991715177 2025-05-05 23:08 81浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 232浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 134浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 196浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 51浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 383浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 259浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦