干货|锂离子电池容量衰减变化及原因分析

锂电联盟会长 2024-06-11 12:22
点击左上角“锂电联盟会长”,即可关注!

一、锂离子电池容量衰减现象分析

正负极、电解液及隔膜是组成锂离子电池的重要成分。锂离子电池的正负极分别发生锂的嵌入脱出反应,其正负极的嵌锂量成为影响锂离子电池容量的主要因素。因此,必须维持锂离子电池正负极容量的平衡性,才能确保电池具备最佳性能。


通常来说,锂离子电池常用有机溶剂和电解质(锂盐)组成的电解质溶液,该电解质溶液应当具备足够的导电性、稳定性,并且能够与电极实现相容。对于隔膜来说,其性能是决定电池内阻及界面结构的主要因素,对电池容量衰减变化情况有着直接的影响。若隔膜的质量和性能优越,将会显著提升锂离子电池的容量和综合性能。一般情况下,隔膜在电池中主要起着分隔电池正极和电池负极的作用,避免正负极发生接触而导致电池短路,同时还能够放行电解质离子,以充分发挥电池效用。

锂离子电池中的化学反应不仅仅包括锂离子嵌入和脱出过程中的氧化还原反应,还包括诸如负极表面SEI膜的生产和破坏、电解液的分解以及活性材料的结构变化和溶解等副反应,这些副反应都是造成锂离子电池容量衰减的原因。

电池循环过程中发生容量衰减和损失是必然现象,因此,为了提高电池容量和性能,国内外各领域的学者充分研究了锂电池容量损失的机理。目前,可知引起锂离子电池容量衰减的主要因素包括正负极表面形成SEI钝化膜、金属锂沉积、电极活性材料的溶解、阴阳极氧化还原反应或副反应的发生、结构变化及相变化等。当前,对锂离子电池容量衰减变化及其原因仍然在不断研究的过程中。

二、过充电
2.1 负极过充反应
能够作为锂离子电池负极的活性材料种类较多,以碳系负极材料,硅基、锡基负极材料、钛酸锂负极材料等为主要材料。不同类型的碳材料具有不同的电化学性能,其中,石墨具有导电性能较高、层状结构优良、结晶度高的优势,较为适合锂的嵌入和脱出,同时石墨材料价格实惠、存量较多,因此,应用较为广泛。

当锂离子电池首次充放电时,溶剂分子会在石墨表面发生分解反应,并形成名为SEI的钝化膜,这一反应会引发电池容量损失,并且属于不可逆的过程。锂离子电池过充电过程中,负极表面会发生金属锂沉积现象,该情况容易发生在正极活性材料相对于负极活性材料过量的情况下。同时,若在高倍率条件下,也有可能产生金属锂沉积现象。

通常来说,形成金属锂导致锂电池容量衰减变化的原因主要包括以下方面:第一,导致电池中可循环锂量降低;第二,金属锂与电解质或溶剂发生副反应,形成其他副产物;第三,金属锂主要沉积在负极和隔膜之间,从而造成隔膜孔隙堵塞,导致电池内阻增加石墨材料的不同,锂离子电池容量衰减变化的影响机理也存在一定差异。天然石墨的比表面积较高,因此,发生自放电反应将会导致锂电池容量损失,并且天然石墨作为电池负极,其电化学反应阻抗也比人造石墨要高。另外,循环过程中负极层状结构解离、极片制作过程中导电剂分散情况、储存过程中电化学反应阻抗的增加等因素,都是导致锂电池容量损失的重要因素。

2.2 正极过充反应
正极过充电主要在正极材料占比过低的情况下发生,导致电极间容量失衡,致使锂电池容量发生不可逆的损失,并且正极材料和电解液分解出来的氧气及可燃气体的并存和不断积累,可能会给锂电池的使用带来安全隐患。

2.3 电解液在高电压下发生反应
若锂电池充电电压过高,将会导致电解液发生氧化反应,并生成部分副产物,将电极微孔堵塞,阻碍了锂离子的迁移,从而造成循环容量衰减变化。电解质浓度和电解液的稳定性的变化趋势成反比,电解质浓度越高,电解液稳定性越低,进而对锂离子电池容量产生影响。在充电过程中,电解液会发生一定消耗,因此,需要在装配时进行补充,导致电池活性材料减少,并影响电池初始容量。

三、电解液分解
电解液包括电解质、溶剂和添加剂,其性质会对电池的使用年限、比容量、倍率充放电性能和安全性能等产生影响。电解液中电解质和溶剂的分解都会引起电池容量发生损失。在首次充放电时,溶剂等物质在负极表面生成SEI膜会形成不可逆的容量损失,但这是必然情况。若电解液中存在水或氟化氢等杂质时,可能会使电解质LiPF6在温度较高的情况下发生分解,并且生成的产物与正极材料反应,导致电池容量受到影响。同时,部分产物还会与溶剂发生反应,并对负极表面的 SEI膜的稳定性造成影响,会造成锂离子电池性能衰减。除此之外,若电解液分解的产物不与电解液相容,将会在迁移过程中阻塞正极孔隙,从而导致电池容量衰减。总的来说,电解液和电池的正负极之间副反应的发生,以及产生的副产物,都是造成电池容量衰减的主要因素。

四、自放电
锂离子电池在一般情况下,会发生容量损耗现象,这一过程被称为自放电,分为可逆容量损失和不可逆容量损失。溶剂氧化速率对自放电速率产生直接影响,正负极活性材料可能在充电过程中和溶质发生反应,导致锂离子迁移完成容量失衡及不可逆衰减,因此,可以看出减少活性材料表面积可以降低容量损失速率,且溶剂的分解会影响电池贮存寿命。另外,隔膜漏电也会导致容量损失,但这种可能性较低。自放电现象若长期存在,会导致金属锂沉积,并进一步导致正负极容量的衰减变化。

五、电极不稳定性
充电过程中,电池正极的活性材料不稳定,会导致其与电解质发生反应,并影响电池容量。其中,正极材料结构缺陷、充电电势过高、炭黑含量都是影响电池容量的主要因素。

5.1 结构相变
5.1.1 LiMn2O4
尖晶石LiMn2O4在我国具有丰富资源,且价格低廉,具有较好的热稳定性,是电池正极的主要材料。LiMn2O4正极在高温环境下的储存及电池充放电循环过程中,都会导致电池容量发生衰减变化,其主要是由以下因素导致的:首先,在高电压条件下,电解液发生电化学反应,一般是高于4.0V;其次,LiMn2O4材料中含有的Mn在电解液中溶解,产生歧化反应,破坏了正极材料的晶相结构。

对于以LiMn2O4为正极,C为负极的锂离子电池,其会在高压状态下导致溶剂发生分解,并伴随着C负极的氧化反应,生成的氧化产物向正极发生迁移,并随着正极发生溶解反应。溶解后形成的二价锰离子将会在负极被还原,并与其他杂质共同沉积。而Mn的氧化物只会在负极靠近隔膜的方向发生沉积,而不会沉积在靠近集流体的方向,即Mn的氧化物仅沉积在SEI膜的表面,也正因为这样,才会导致电池容量发生衰减变化。将抑制剂加入电解液中,能够有效对金属离子的溶解状态形成抑制作用,并提升电池的循环性能。

除此之外,以LiMn2O4为正极,C为负极的锂离子电池在充放电过程中,随着锂离子的嵌入和脱出,可能会引起LiMn2O4的晶格常数变化,并在立方晶系和四方晶系间发生相转变。锂离子在正极材料内部的扩散速率比锂离子在正极表面的嵌入速率要低,当电位约为4V时,锂离子聚集于LiMn2O4表面,并发生Jahn-Teller效应,致使结构发生扭曲和转变,从而引起电池容量衰减。

5.1.2 LiCoO2
LiCoO2在锂离子电池阴极材料中的应用具有较大优势,主要体现在能够可逆地实现锂离子的嵌入和脱离,并且具有较大的锂离子扩散系数、可逆插入量及结构变化程度,因此,对于提升锂电池充放电电流具有重要作用。同时,该材料结构稳定,锂离子的脱嵌可逆性较好,能够有效保证充放电的库伦效率及电池的使用年限。通过国内外相关学者对LiCoO2体系的容量衰减机理的研究,发现影响锂电池循环过程中容量衰减变化的因素主要是由于正极界面阻抗升高和负极容量的损失。

同时,相关学者还发现,循环次数越高,正极、负极的容量损失与全电池容量损失相比贡献降低,且活性锂离子迁移能力的下降,会对电池整体容量衰减产生更大的影响。并且由图1可知,电池循环次数>200次后,正极材料并未发生相变, 而LiCoO2层状结构规整程度降低,锂离子、铬离子的混排现象增加,使得锂离子难以有效脱嵌,从而导致电池容量衰减。另外,增加放电倍率会对锂、铬原子的混合产生促进作用,会导致 LiCoO2 原有的六方晶型转变为立方晶型,从而引起锂离子电池的容量衰减变化。
图1 循环过程中阻抗和容量变化曲线
另外,在LiCoO2体系中,通过对25℃(即常温状态下)和60℃中电池循环容量衰减规律的研究,可发现在150次循环前,60℃以下电池放电容量要比常温下电池容量和额定容量高,这是因为在高温状态下电解液黏度降低,使锂离子迁移速率提升,从而提高活性锂的利用率,电池表现出较高的充放电容量。当经过300次循环后,60℃下电池的极化容量损失要远高于常温状态下,可以看出温度升高加剧了锂离子电池充放电过程中电极的电化学极化,使得锂电池在充放电过程中容量损失更为严重。

5.1.3 LiFePO4
LiFePO4的来源广泛、价格便宜,并具有良好的稳定和安全性能,能够达到170mAh/g的理论比容量,并且其比功率和比能量与LiCoO2相近,能够实现与电解质溶液的良好相容,因此,被广泛应用于锂电池正极。采用此种材料,对电池容量的影响因素主要包括以下两点:一是由于正负极之间发生副反应,致使可循环锂的减少,严重破坏了正负极之间的平衡;二是由于结构劣化、电极层离、材料溶解、颗粒离析等因素,导致活性材料产生损失,从而影响电池容量。

5.2 正极材料的炭黑含量
由于炭黑本身是非活性物质,因此不参与放电反应,若正极材料中所含炭黑量过高,将会对正极材料的强度及容量产生影响,所以需要酌情添加。另外,传输载体在炭黑表面生成了具有催化性质的物质,其能够提升金属离子分解速率,并能够有效促进活性物质溶解。

参考:王昆等《锂离子电池容量衰减变化及原因分析》
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论 (0)
  • 软瓦格化 RISC-V 处理器集群可加速设计并降低风险作者:John Min John Min是Arteris的客户成功副总裁。他拥有丰富的架构专业知识,能够成功管理可定制和标准处理器在功耗、尺寸和性能方面的设计权衡。他的背景包括利用 ARC、MIPS、x86 和定制媒体处理器来设计 CPU SoC,尤其擅长基于微处理器的 SoC。RISC-V 指令集架构 (ISA) 以其强大的功能、灵活性、低采用成本和开源基础而闻名,正在经历各个细分市场的快速增长。这种多功能 ISA 支持汽车、航空航天、国防
    ArterisIP 2025-04-14 10:52 57浏览
  • 时源芯微 专业EMC解决方案提供商  为EMC创造可能(适用于高频时钟电路,提升EMC性能与信号稳定性)一、设计目标抑制电源噪声:阻断高频干扰(如DC-DC开关噪声)传入晶振电源。降低时钟抖动:确保晶振输出信号纯净,减少相位噪声。通过EMC测试:减少晶振谐波辐射(如30MHz~1GHz频段)。二、滤波电路架构典型拓扑:电源输入 → 磁珠(FB) → 大电容(C1) + 高频电容(C2) → 晶振VDD1. 磁珠(Ferrite Bead)选型阻抗特性:在目标频段(如100MHz~1GH
    时源芯微 2025-04-14 14:53 52浏览
  •   电磁干扰测试系统:电子设备电磁兼容性保障利器   北京华盛恒辉电磁干扰测试系统作为评估电子设备在电磁环境中电磁兼容性(EMC)的关键工具,主要用于检测与分析设备在电磁干扰环境下的性能表现,确保其符合相关标准,能够在实际应用中稳定运行。   应用案例   目前,已有多个电磁干扰测试系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰测试系统。这些成功案例为电磁干扰测试系统的推广和应用提供了有力支持。   系统组成   电磁干扰测试系统一般由以下核心部分构成:  
    华盛恒辉l58ll334744 2025-04-14 10:40 34浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 63浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 69浏览
  • 亥姆霍兹线圈的应用领域‌物理学研究‌:在原子物理中,用于研究塞曼效应;在磁学研究中,用于测试磁性材料的磁滞回线等特性;还可用于研究电子荷质比等实验‌。‌工程与技术领域‌:用于电子设备校准和测试,提供标准磁场环境;在大型加速器中用于磁场校准;用于电磁干扰模拟实验,测试电子设备在不同磁场干扰下的性能‌。‌生物医学领域‌:研究生物磁场效应,如探索磁场对生物细胞的影响;在生物医学工程基础研究中,提供可控磁场环境‌。‌其他应用‌:作为磁场发生装置产生标准磁场;用于地球磁场的抵消与补偿、地磁环境模拟;还可用
    锦正茂科技 2025-04-14 10:41 47浏览
  •     电气间隙是指两个带电体在空气中的最短距离。导体、电介质(空气),最短距离,就是这个术语的要素了。        (图源:TI)    电气间隙是由安装类别决定的,或者更本质地说,是瞬态过电压的最大值来决定的,而不是工作电压的高低。安装类别见协议标准第007篇,瞬态过电压另见协议标准第009篇。    实际设计中怎么确定电气间隙?可以按照CAT,工作电压和绝缘等级来定。 
    电子知识打边炉 2025-04-13 18:01 73浏览
  •   电磁干扰测试系统软件:深度剖析   电磁干扰(EMI)测试系统软件,是电子设备电磁兼容性(EMC)测试的核心工具,在通信、汽车、航空航天、医疗设备等众多领域广泛应用。它的核心功能涵盖信号采集、频谱分析、干扰定位、合规性评估以及报告生成,旨在保障设备在复杂电磁环境中稳定运行。下面从功能、技术原理、应用场景、主流软件及发展趋势这五个方面展开详细解析。   应用案例  软件开发可以来这里,这个首肌开始是幺乌扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照你的顺序组合可以找到。   目前
    华盛恒辉l58ll334744 2025-04-14 10:02 26浏览
  •  亥姆霍兹线圈的制造材料选择需兼顾导电性、绝缘性、机械强度及磁场性能,具体分类如下:一、‌导线材料1、‌高纯度铜线:‌作为线圈绕制的核心材料,铜因其you异的导电性(电阻率低)和热稳定性成为shou选。漆包铜线通过表面绝缘漆层实现匝间绝缘,避免短路‌。2、‌其他导电材料‌ 铝线等材料可用于特定场景(如轻量化需求),但导电性和抗氧化性较铜略逊二、‌磁源材料‌1、‌永磁体‌如钕铁硼(NdFeB)或铁氧体,适用于无需外部电源的静态磁场生成,但磁场强度有限。2、‌电磁铁‌通过电流控制磁场强度,
    锦正茂科技 2025-04-14 10:22 32浏览
  • 在制造业或任何高度依赖产品质量的行业里,QA(质量保证)经理和QC(质量控制)经理,几乎是最容易被外界混淆的一对角色。两者的分工虽清晰,但职责和目标往往高度交叉。因此,当我们谈到“谁更有可能升任质量总监”时,这并不是一个简单的职位比较问题,而更像是对两种思维方式、职业路径和管理视角的深度考察。QC经理,问题终结者QC经理的世界,是充满数据、样本和判定标准的世界。他们是产品出厂前的最后一道防线,手里握着的是批次报告、不合格品记录、纠正措施流程……QC经理更像是一位“问题终结者”,目标是把不合格扼杀
    优思学院 2025-04-14 12:09 50浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 74浏览
  • 一、磁场发生设备‌电磁铁‌:由铁芯和线圈组成,通过调节电流大小可产生3T以下的磁场,广泛应用于工业及实验室场景(如电磁起重机)。‌亥姆霍兹线圈‌:由一对平行共轴线圈组成,可在线圈间产生均匀磁场(几高斯至几百高斯),适用于物理实验中的磁场效应研究。‌螺线管‌:通过螺旋线圈产生长圆柱形均匀磁场,电流与磁场呈线性关系,常用于磁性材料研究及电子束聚焦。‌超导磁体‌:采用超导材料线圈,在低温下可产生3-20T的强磁场,用于核磁共振研究等高精度科研领域。‌多极电磁铁‌:支持四极、六极、八极等多极磁场,适用于
    锦正茂科技 2025-04-14 13:29 46浏览
  • 在公共安全、工业调度、户外作业等场景中,对讲机作为关键通信工具,正面临从“功能单一化”向“智能融合化”的转型需求。WT2605C蓝牙语音芯片凭借双模蓝牙架构、高扩展存储方案与全场景音频处理能力,推动传统对讲机实现无屏化操控、专业级音频解码与蓝牙音箱功能融合,为行业用户打造更高效、更灵活、更低成本的通信解决方案。一、无屏化交互革命:BLE指令重构操作逻辑针对工业环境中对讲机操作复杂、屏幕易损的痛点,WT2605C通过双模蓝牙(BR/EDR+BLE)与AT指令集,实现全链路无屏控制:手机APP远程控
    广州唯创电子 2025-04-14 09:08 33浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦