【光电集成】晶圆微凸点技术在先进封装中的应用研究进展

今日光电 2024-06-09 18:00

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

摘要

先进封装技术持续朝着连接密集化、堆叠多样化和功能系统化的方向发展,探索了扇出型封装、2.5D/3D、系统级封 装等多种封装工艺。晶圆微凸点技术已被广泛应用于各种先进封装工艺技术中,是最重要的基础技术之一。本文介绍了微凸点 制备的主要技术并进行优劣势比较,同时详述了锡球凸点和铜柱凸点两种不同的微凸点结构,为微凸点技术的更深入研究提供 参考。最后,本文整理了微凸点技术在先进封装中的应用,并展望了未来的发展趋势。

0 引 言 
 

自 1965 年摩尔定律提出后的半个多世纪以来,半 导体集成电路一直遵循着摩尔定律发展。2022 年, 三星和台积电先后宣布 3 nm 制程工艺实现量产,工艺 制程的节点逐步接近原子尺寸级别。通过缩小晶体管 尺寸来提高芯片集成度和性能的方式,成本和技术难 度会大幅增加,先进封装逐步成为延续摩尔定律的主 要方式。先进封装的目的是提升功能密度,缩短互联 长度,提升系统性能,降低整体功耗。先进封装主要 有扇出型封装(fan-out,FO)、2.5D/3D、系统级封装 (system-in-package,SIP)等封装形式。晶圆微凸点作 为先进封装中的关键基础技术之一,其主要作用是电 信号互连及机械支撑。目前绝大部分的先进封装均需 要用到晶圆微凸点技术,而凸点的制备则是微凸点技 术最为关键的环节。本文将综述晶圆微凸点的主要制 备技术、结构及其在先进封装中的应用研究进展,并 结合未来市场发展趋势,展望微凸点技术的发展方向。 

1 晶圆微凸点制备方法及应用 
 

晶圆微凸点最早由 IBM 公司于 1970 年发明,随 着工业技术的发展,为了满足特定的市场需求,凸点 的种类也越来越多。按凸点材料种类可分为金(Au) 凸点、铜/镍/金(Cu/Ni/Au)凸点、铜柱(copper pillar) 凸点、锡/铅(Sn/Pb)凸点和锡/银/铜(Sn/Ag/Cu)凸 点等。按凸点结构和形状可分为蘑菇形、直状、圆柱 形、球形、迭层、周边形、微型和面阵凸点等。根据 应用的领域和场景的差异,凸点形状不一样,其中应 用最广的是圆柱形、球形和面阵凸点。凸点制备方法 有蒸发溅射法、电镀法、化学镀法、机械打球法、焊 膏印刷法和植球法等。本文将重点介绍应用比较广泛 的机械打球法、焊膏印刷法、植球法和电镀法。不同 制备方法有着不同的应用领域,也表现出不同的优劣 势。表 1 为晶圆微凸点不同制备方法的优劣势对比。

1.1 机械打球法 

机械打球法制作的凸点叫钉头凸点(stud bump  bond,SBB),是使用金丝球焊机利用热压超声键合工艺 制作凸点的一种技术,常用来制备金钉头凸点。SBB 工艺的基本原理如图 1 所示。

首先通过电火花放电的方法在金丝尾端成球,然后在加热、加压和超声的共同作用下,将 Au 球焊接到芯片的电极上,接着劈刀提起,线夹保持打开,送出一段尾丝,最后线夹关闭,劈刀向上运动,通过拉伸颈缩作用切断金丝,完成整个凸点的制作过程。制备 的钉头凸点如图 2 所示。机械打球法可以直接在离散芯片的金属铝电极上制作钉头凸点,不需要在电极区 制作出凸点下金属层(under bump metal,UBM),工艺简单,成本低。


头凸点一般为金凸点。金凸点因其电导率较高,且抗 电迁移能力强,被应用于显示驱动芯片、CMOS (complementary metal oxide semiconductor)图像传感 器、指纹传感器、射频识别芯片领域。崔洪波等采用AuPd 1%丝在微波 GaAs 芯片上使用美国 Westbond 公司的 7700E-79 型半自动金丝球焊机制作出直径 80 μm 的钉头金凸点,完成了超声焊接,为凸点芯片倒 装焊接以及电性能研究打下了良好基础。何中伟采 用直径 31.8 μm 的金丝,通过自动球焊机制作出直径为 (115±4)μm 的钉头金凸点,经 F&K5600 型键合拉 力/剪切力测试仪测量,最小抗剪切力为 0.658 1 N,能 够达到 GJB548A、华东光电集成器件所规范、美国 Palomar 公司规范、中国台湾 Chipbond 公司标准剪切 力要求。

近年来,关于钉头金凸点的研究也在持续进 行,从 1 层钉头金凸点到 2 层金凸点,从金球位置测试,到金球推力、直径、厚度、高度、合金率测 试等方面展开深入研究,推进钉头金凸点更好地应 用于电子封装领域。但当器件的电极(I/O)数较多 时,成本将会大幅上升。Zama等尝试使用 Cu 代替 Au 制作钉头凸点,抗剪切力等性能没有明显 下降,但由于 Cu 容易氧化和腐蚀,未能大规模使 用。因此,当器件引脚数较多时,通常采用其他方 式制作凸点。

1.2 焊膏印刷法

焊膏印刷法是一种引自于印制电路板(printed  circuit board,PCB)行业的在晶圆上漏印制作凸点的工 艺,主要步骤包括:画图制版、制作焊膏漏印版、对 中焊膏漏印版、印刷焊膏、焊接、清洗和检测。此 方法是在凸点下金属层表面特定区域印刷焊料,最后 通过热回流形成所需凸点。焊膏印刷法的工艺流程 如图 3 所示。

焊膏印刷法因其可以直接采用表面贴装技术 (surface sounted technology,SMT)生产工艺中的焊膏 印刷设备,设备资金投入较小,成本较低,被广 泛应用于 200~400 m 的焊盘间距的凸点制备。但 对于小间距焊盘,由于模板印刷不能均匀分配焊料 体积,为保证凸点高度和球径,印刷的焊膏较多, 通过常规的焊膏印刷、回流焊接后,焊料球之间容易 互联,且无法修复,其应用受到限制。另外,由于焊 膏中存在有机添加剂,在后续高温回流过程中有机添 加剂会挥发,从而产生空洞。随着电子技术的不断 发展,晶圆凸点节距和直径也变得越来越小,因模板 网板孔太小、容易发生堵塞而导致焊料凸点均匀性较 差,致使产生产品可靠性风险。对于消费电子而言, 凸点直径集中在 150 μm 以下,节距集中在 200 μm 以 下,焊膏印刷技术已经不再适用,需要开发其他更精 密的凸点制作技术。

1.3 植球法

植球法是专门针对焊料凸点制造开发的,与 SMT 技术的兼容性较好。植球法采用晶圆级植球机, 通过定位相机对已经做好电路再分布的晶圆进行精 准定位,使用钢网印刷的方式将助焊剂和锡球转印 至对应的焊盘位置,再通过氮气氛围高温回流完 成锡球与焊盘的焊接,从而完成整个工艺过程。植 球机由上料系统、下料系统、印刷系统和植球检查系统组成,其中最主要的是印刷系统。印刷系统 分为助焊剂印刷和印刷植球两部分,均采用刮刀在 与晶圆图案花形一致的网板上反复运动,将助焊剂均 匀涂覆到UBM表面,再将锡球扫入网板筛孔中,利 用助焊剂的粘附性将锡球植入晶圆上。刘劲松等采用国内自主研制的晶圆级微球植球机 WMB-1100 完 成在12英寸晶圆上植入250 μm 的锡球,植球精度 小于 1/2 球径。植球原理及植球机工作流程如图 4 所示,Lin 等在 300 mm 晶圆上采用植球法完成了 直径为 70 m、间距为 130 m 的 SnCu0.7 微型球(单 颗芯粒 2 000 个 I/O)植入,良品率超过 99.99%, 无锡球遗漏和桥接。

植球法一般采用 Sn/Pb 球和 Sn/Ag/Cu 球。随着植球 技术的发展,国外有日本爱立发( Athlete )、 AIMECHATEC、德国 Pac Tech,国内有上海微松工业自 动化有限公司、上海世禹精密机械有限公司等目前已实 现 60 μm 直径锡球植球工艺量产,植球精度小于 1/3 球 径,良率可控制在 99.997%以上。植球法制作晶圆凸点 会涉及到光刻、湿法去胶、湿法刻蚀等工艺,工艺流程 如图 5(a)所示,锡球凸点产品如图 5(b)所示。

植球法因其工艺稳定、产能大,良品率高,适用于 晶圆凸点的大规模生产,被广泛应用于图像传感器、 电源管理芯片、高速器件和光电器件等领域,但其需要 先在焊盘上制作 UBM 和印刷助焊剂,工艺较机械打球 法和焊膏印刷法而言更加复杂,成本更高。且对于 60 μm 直径以下的凸点,植球法受限于植球技术和网板制造技 术的发展,容易发生多球、少球、球偏移等问题,良品 率大幅降低,因此对于小直径凸点,植球法不再适用。

1.4 电镀法

电镀凸点是采用电化学沉积技术在晶圆表面的物 理气相沉积(physical vapor deposition,PVD)种子层 上(通常是 Ti/Cu 薄膜)沉积金属的工艺方法。电镀 法精度高,对于细间距、高密度的凸点制备具有明显 优势。就凸点电镀方式而言,根据晶圆放置方向,电 镀设备分为垂直镀和水平镀。电镀工艺主要分为预润湿、电化学沉积和清洗3个步骤。预润湿是将纯水 均匀喷覆到金属种子层上,可提高电镀液在种子层上分布的均匀性,减少气泡、无镀层、镀覆不均匀等失效问题;电化学沉积是利用金属的氧化还原特性,使电镀液中的金属离子均匀沉积到金属种子层表面,用于制备金属线、金属柱等;清洗是为了去除镀件上残留的电镀液,避免发生电化学腐蚀、镀液污染等问题。电镀工艺流程及电镀的铜柱凸点产品如图 6 所示。

电镀方法在小直径、小节距凸点制备方面性能表 现良好。陈聪等通过电镀方法在Si基板上制备了直径为60μm、高度为54 μm 的 Cu-Ni-AuSn 铜柱凸点, 芯粒内凸点高度均匀性小于 2%;Oi 等使用 i-THOP 设计规格的基板,通过电镀方法制备了直径为 25 μm,间距为 40 μm 的铜柱凸点,实现了高密度凸点芯片倒 装封装工艺。Yoon 等采用电镀方法制备了间距为 40 μm、高度为 20 μm 的 Cu/SnAg 组分的凸点,经倒装 后其可靠性测试满足 JEDEC(joint electron device  engineering council)标准。采用电镀方法制备出的晶圆 凸点高度均匀性好,一般可控制在 5%以内,且工艺可 控。除此之外,电镀技术已经能够实现小于 10 μm 直 径的晶圆凸点制造,且工艺相对成熟,被广泛应用 于图像处理器、存储器芯片、ASIC(application- specific  integrated circuit)、FPGA(field programmable gate  array)、电源管理芯片、射频前端芯片、基带芯片、功率放大器等产品中。

2 晶圆微凸点结构 
 

先进封装中,晶圆凸点往往是通过 UBM 连接到晶 圆表面的,制作凸点之前通常需要先进行 UBM 制备作 为凸点“承载体”。因此,业内常说的晶圆凸点结构一 般是包含 UBM 层和凸点。

2.1 UBM 层 

芯片电极的材料通常是铝或铝合金。若铝和铜柱 或者锡凸点直接互连,易生长形成晶粒粗大的金属间 化合物(inter metallic compound,IMC),影响互连可 靠性,为保证凸点与电极之间的结合力满足器件要求, UBM 层需要提供粘附、阻挡扩散、提供润湿的作用, 如图 7(a)所示。由于任何一种单质金属都不能同时 具备这 3 种功能,因此 UBM 层通常情况采用多层金属 薄膜结构。粘附层要求与铝的接触电阻小,热膨胀系 数接近,且需要与铝层及晶圆钝化层粘附性好,该层 金属常常选用 Ti、Ti-W、Cr 和 Ni 等。阻挡扩散层主 要作用是防止凸点材料与 Al 电极之间发生相互扩散, 从而影响器件性能,该层金属通常选用 Ni、Ti、Cu、 Pd 和 Pt 等。润湿层要求与凸点材料形成良好浸润效果, 在凸点回流焊接过程中不容易或者不会生成不利的 IMC 层,该层金属通常采用 Au、Cu 等。产品应用领 域不同,对应的 UBM 层结构也不同,经过长期的实际 应用与研究优化,逐步形成了一些相对固定的 UBM 薄 膜层结构,如 Ti-W/Cu、Ti-W/Au/Cu、Cr/Cr-Cu/Cu、 Ti/Cu 和 Ti/Ni/Au 等。UBM 层材料选择必须基于所要 求的凸点金属化体系、芯片金属化结构、芯片工作条 件、可靠性要求、电流传输要求和工艺流程要求(如 多次回流焊)等。UBM 层的制作方法有溅射镀膜和化 学镀,目前大多数的 UBM 层结构采用溅射镀膜制作。

2.2 凸点

凸点的结构有多种,其中锡球凸点(solder ball  bump)和铜柱凸点(copper pillar bump)较为常见。对于锡球凸点制作工艺,通过高温回流使得锡球与焊盘 连接,但是锡球凸点在回流过程中容易发生坍塌现象, 导致与相邻的锡球凸点桥接而造成短路。当芯片外引 端节点距离低于 130 μm 时,锡球凸点便不再适用。铜柱凸点以铜柱为支撑,在其顶部加上少许锡银焊料, 可以在实现相同凸点高度的同时,减少了焊料的使用。铜柱凸点的节距一般在 60~140 μm 之间,铜柱凸点代替锡球凸点,可以实现更小间距的芯片互连,可应用 于更高引线数量的先进封装。

1)锡球凸点 

锡球凸点常用于倒装芯片焊接互连,焊料大多是 含铅焊料(如 SnPb 等),锡球凸点结构如图 7(b)所 示。自中国颁布了禁止使用铅及其化合物的法令以来, 在非军领域,Sn 基无铅焊料成为最主要的互连材料。Sn 基焊料适当添加银、锌、铜、铋等金属元素形成合 金来改善焊料性能,得到满足器件所需的机械、电气 和热性能,常见的有 Sn-Ag-Cu、Sn-Cu、Sn-Ag、 Sn-Zn 和 Sn-Bi 焊料。Sn-Ag-Cu(SAC)因其具备良好的焊料硬度、抗拉强度、屈服强度、剪切强度、冲击 强度和蠕变强度,逐步成为电子钎焊最多的无铅焊料 合金体系,当前应用最多的是欧盟的 Sn3.8Ag0.7Cu,日 本的 Sn3.0Ag0.5Cu(SAC305)、Sn3.5Ag0.7Cu 等焊料, 这些焊料都属于高银体系(Ag 含量大于 1%),性能更加 优异。Sabbar 等研究了 Ag 含量对 SAC 焊点的机械性 能的影响,结果显示,随着 Ag 组分的含量增加,回流 后生成的 Ag3Sn化合物就越多,对焊点的抗剪切能力提升作用明显。然而高银含量导致成本高昂,因此行业内需开发低银体系以节约成本。据研究,低银焊料相比于 高银焊料,具有更低的成本和一致的润湿性能。低银 焊料的微观结构中不存在 Ag3Sn IMC,表明低成本低银焊料具有良好的可焊性和可靠性,但随着银含量的降低, 焊料的力学性能下降,熔点会上升。

添加金属元素 Bi、Ni、Al 等能提升低银焊料的力 学性能。Lin 等研究了 Bi 和 Ni 对 SAC 焊料力学性 能的影响,结果显示,SAC 纳米硬度为 10.62 GPa,而 加入了 Bi 和 Ni 的 SAC-Bi 和 SAC-Ni 焊料,其纳米硬 度达到了 16.88 GPa 和 20.48 GPa,相较于 SAC 有大幅 提升。Ren 等在 SAC305 焊料中加入 0.5%~10%的 In 粉,研究表明,随着 In 含量的增加,焊料的硬度显 著升高。Sun 等研究了纳米 Al 对 SAC105 焊料剪切 性能的影响,纳米 Al 加入后其剪切力为 66.4 N,优于 未添加的 SAC105(剪切力为 54.2 N),表明纳米 Al 的 加入能提高焊点剪切力。添加 Bi、Ni 和 Zn 等可降低 低 银 焊 料 的 熔 点 。Liu 等发现在 Sn0.7Ag0.5Cu (SAC0705)钎料中添加 Bi 和 Ni 元素能显著降低焊料 熔点。研究表明,质量分数 3%的 Zn 加入 SAC103 焊料后,熔点从 227.7 ℃降至 220.8 ℃。经过大量研 究和改进,目前研究最多、应用范围最广是 Sn1.0Ag0.5Cu (SAC105)和 Sn0.3Ag0.7Cu(SAC0307)这两种焊料, 被认为是第二代无铅焊料。

2)铜柱凸点 

铜柱凸点由铜柱和焊料帽组成,铜柱提供机械支 撑和电气连接,焊料帽将芯片与基板通过焊接进行互 连。IBM 公司发明了一种两层结构的 Cu-Sn 凸点 (MPS-C2),凸点结构如图 8(a)所示。在焊接互 连过程中,锡帽与铜柱界面会生成金属间化合物 (IMC),IMC 层晶粒不均匀会导致很高的脆性,造成 器件长期服役过程中可靠性和寿命受到影响。研究表 明,当其他条件保持不变时,Sn/Ag凸点因形成了Ag3Sn 微粒的稳定结构,比 Sn/Cu 凸点拥有更优异的电迁移特性,Sn/Ag 焊料也逐渐取代了纯 Sn 焊料。

随着先进封装技术的发展,铜柱凸点节距已到达 20 μm 以下。Liu 等对 10 μm、5 μm 和 1 μm Sn/Cu 凸点 IMC 生长过程进行研究。结果表明,当凸点直径 从 10 μm 减小至 1 μm 时,IMC 生长速度会持续增加, 这种现象也被称为“IMC 尺寸效应”。IMC 持续增加会 发生空洞等失效情况。为解决这种缺陷,通常在铜柱 和锡银层中间加入金属镍层作为阻挡层以抑制凸点界 面的 IMC 生长,镍层厚度通常控制在 2~5 μm 范围之 间。Bertheau 等分别研究了直径为 25 μm 和 80 μm 的 Cu/Sn 和 Cu/Ni/Sn 两种凸点在不同环境中的微观结 构演变过程。结果表明,Cu/Ni/Sn 凸点比 Cu/Sn 凸点 具有更慢的 IMC 粗化速率,说明镍层对于铜锡金属具 有阻挡扩散的作用。Intel 公司发明了一种间距为 175 μm、直径为 105 μm 的新型铜柱凸点。该凸点通 过在铜柱外表面覆盖一层阻挡薄膜和润湿薄膜,使其具备优异的润湿性和抗电迁移性能,凸点结构如图 8 (b)所示。现如今,常见的铜柱凸点结构如图 9 所示, 为铜柱+阻挡层+锡帽结构,锡帽常常是 SnAg 合金,阻 挡层一般为金属 Ni。

3 微凸点在先进封装中的应用及发展趋势 
 

晶圆微凸点广泛应用于倒装芯片球栅格阵列封装 (flip chip ball grid array,FCBGA)、扇出型封装和 2.5D/3D 封装等各类先进封装中,已实现再布线层 (redistribution layer,RDL)线宽/线距 5 μm 的大规模量 产。倒装芯片技术是目前市场占比最多的封装技术, 被应用于军工、无源滤波器、存储器等领域。晶圆微 凸点除应用于常规线宽/线距 5 μm 的产品中,还应用于 如华天、长电、台积电、三星、Intel 等公司密度更高 的扇出型、2.5D 及 3D 封装中。华天科技嵌入式硅基扇 出封装、长电科技多维扇出封装等封装技术,采用 高密度再布线技术,线宽/线距为 2 μm;台积电 InFO ( integrated fan-out on substrate ) 技 术平 台 孵 化 的 InFO_PoP、InFO_oS 和 InFO_LSI 3 种扇出型封装,其 中 InFO_oS 线宽/线距为 2 μm。高密度扇出型技术应用 于射频、无线芯片、处理器、基带芯片等封装领域。Intel 公司嵌入式多硅片互连桥型 2.5D 封装,通过硅桥来实 现高带宽和短距离的数据通信,线宽/线距为 1 μm;三星提供的 2.5D 封装有 I-CUBE-E、I-CUBE-S 和 H-CUBE,台积电有 CoWoS_L、CoWoS_R 和 CoWoS_S, 其中 CoWoS_R 的 RDL 间距仅为 4 μm,线宽/线距为 2 μm。2.5D 封装广泛应用于图像处理、智能穿戴设备 领域。Intel 公司的 Foveros3D 封装已能够实现多个 不同制程的芯片互连,台积电的 SoIC_WoW 3D 封装 已能够实现 10 000/mm2 I/O 高密度封装,三星的 X-CUBE 已 实 现 超 薄 转 接 板 的 工 艺 稳 定 性 (100 μm),X-CUBE 封装线宽/线距已在 2 μm 以下。3D 封装广泛应用在智能芯片、5G 领域。

图 10 为晶圆微凸点在各类先进封装中的应用,列 举了具有代表性的封装示意图。其中图 10(a)为国内 封测领军企业长电科技的 FCBGA 结构示意图,芯片与 基板间采用铜柱凸点进行互连,节距为 130 μm,直径为 80 μm;图 10(b)为 InFO_oS,是由多个芯片扇出型工 艺的集成,芯片与基板之间采用铜柱凸点进行互连,相 对于倒装芯片,大大提升了功能密度;图 10(c)为三星 的 I-CUBE-E 2.5D 封装,采用了无硅通孔(through-silicon  via,TSV)结构,以布线中介层作为转接板,芯片底部 与转接板上部、转接板底部与基板上部通过锡球凸点进 行互连;图 10(d)为三星 X-Cube 3D 封装结构,HBM (high bandwidth memory)芯片是带有 TSV 的双面凸点 结构(一般为铜柱凸点),采用两面成型自动焊完成芯 片间互连,这种立体堆叠互连结构大幅度缩短了信号 传输距离,提升数据传输速度,降低功耗。

图 11 为逻辑芯片与相对应的先进封装技术关键工 艺特征尺寸微缩路线图。图中显示,自 2018 年以来, 先进封装晶圆微凸点间距已经下降到 50 μm 以下, 40~50 μm节距的晶圆微凸点应用于2.5D/3D堆叠的半 导体产品中的互连可靠性及可行性已经得到验证,并实现批量生产。然而,随着人工智能和 5G 技术的不断 发展,封装产品为获取更高的带宽以达到更高的数据 传输速率,要求微凸点节距和直径不断缩小,导致互 连可靠性问题频发。器件往往同时要求高的凸点高度和小的直径,长期服役过程中,IMC 不断增长会消耗焊 料,由于焊料体积的收缩,会导致焊接部位产生空隙, 影响焊点的完整性,进而影响互连可靠性。当凸点间距 减小至 20 μm 以下时,在热压键合时,若产生细微的 倾斜,则会使焊料变形挤出而发生桥连短路。另外, 因尺寸效应,在小直径的凸点中,IMC 占据了凸点大 部分的体积,表面扩散和柯肯达尔孔洞等问题急剧增 加,微凸点进一步缩减互连节距遇到了前所未有的瓶颈。随着索尼获得 Ziptronix 公司混合键合技术授 权,推出了混合键合技术高性能图像传感器。半导 体业界逐步意识到,混合键合将会成为突破凸点微型 化瓶颈的有效途径。此后,Intel、台积电、三星和华为 等领先机构陆续对混合键合技术展开了深入的研究。Intel公司的Foveros和台积电集成片上系统都应用了混 合键合的三维集成产品。Cu-Cu 键合是目前相对较为成 熟的混合键合方案,即在无焊料的铜柱之间直接完成 互连,能够有效避免桥接问题,具备优良的电、热、 机械性能,Cu-Cu 键合技术在超小间距(小于 10 μm) 的芯片互连中表现出了巨大的优势。

4 结 论
  

在先进封装工艺技术中,凸点的制备方法主要有 机械打球法、焊膏印刷法、植球法和电镀法。机械打 球法受制于金凸点成本和效率问题,目前仅用于 I/O 数 量不多、对抗电迁移可靠性要求高的产品;焊膏印刷 法因其工艺限制性不适用于低于 200 μm 的细间距凸点 制作;植球法适用于 60 μm 以上凸点制备;电镀法可 满足 10 μm 以下凸点制备。凸点结构主要有锡球凸点 和铜柱凸点两大类,锡球凸点应用最广泛的是 SAC 焊 料体系,受制于成本,低银的 SAC 体系 SAC105 和 SAC0307 未来可能成为主流;铜柱凸点通常为铜柱+阻 挡层+锡帽结构。晶圆微凸点广泛应用于倒装封装、扇出 型封装和 2.5D/3D 封装中,但随着凸点互连节距不断缩 小,可靠性问题频发。未来晶圆微凸点将朝着更小节距、 更小直径方向不断发展,同时无焊料的铜柱凸点的 Cu-Cu 键合互连方式逐步在小节距领域占据主导地位。

来源:半导体封装工程师之家



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 175浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 124浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦