如何设计一个拯救银河系的充电器

英飞凌工业半导体 2024-06-08 08:02

邀请你一起来创作科普作品,点击报名

👇👇


作者简介

本文是第一届电力电子科普征文大赛的二等奖作品,作者:吴韬,来自台达电子。


吴工姓吴,做了快20年的工程师,因为不停有同事供应商客户喊自己“吴工”,虽然老大不情愿但众口铄金只好半推半就的接受了这个称呼。


吴工的主业是做电源。每次千辛万苦地做出一个产品,兴高采烈地拿到客户那里介绍……



客户却总是一副见多识广不以为然的样子… ...



吴工想扭转这一局面,决定拿同事设计的一款充电器改造一下。这个产品是2017年面世,是当时世界上最小的60W充电器。



为了能普及一下电源知识让大家了解下产品设计的艰辛,同时也兼顾文理科观众的欣赏能力和知识层次,吴工画了个通俗易懂的教程,因为不是专业画家的缘故,画风粗糙还请见谅了。


学过高中物理的朋友都知道,墙上插座的电是220V 50Hz。



50Hz的意思就是它从高到低,再从低到高,每秒钟重复50次。


那么问题来了,我们手机笔记本充电,只要5V到20V的直流电压, 220V太高了,怎么办?





对的,我们得用变压器。如果变压器把220V 50Hz频率的电压变成低的电压,那么变压器1秒钟要传递50次能量。

如果让变压器工作的频率更快一点,假设需要传递总能量不变,那么变压器每次工作只要传递很少的能量就可以了,变压器就能变小,充电器也能变小了。

这看起来很完美,但是能量的传递每送一次总会有些损失,工作次数越多,丢的也越多。


这些多余的损耗会变成热散发出去,效率会变差,电源体积反而不能缩小,因为没有足够的面积去散热了。


于是工程师设计出各种线路去减少损失,



或者升级成性能更好的器件,减少浪费,提高效率。


虽然这些都增加了电路的复杂度和成本,但是提高了效率,电源满负荷工作也不会发热烫手了。


不过新问题又来了!待机休眠的时候,虽然不会发热了,可电源仍然按照很高的频率辛勤工作着,效率会很低。



也许您可能不在乎那些电费,但是国家都有对待机功耗都有要求,如果超过要求,是不能卖的。



这又逼着工程师设计新电路,让充电器在设备休眠的时候间歇性的工作,减少损耗。



但是问题又来了,间歇性的工作会产生噪音,容易被人耳接收到,影响用户体验。



工程师还要想方设法减少噪音分贝:让间歇工作的频率不要落在人耳能提到的音频范围内;减少每次工作时候的能量;变压器加胶等等。


你以为这样就大功告成了吗?问题还远远不止这些……


比方说,因为工作频率高,工作太卖力,常常有能量会跑到临近家用电器上,严重的时候会干扰到人家的正常工作。



这也是国家质量强制认证CCC法规不允许的。



为阻挡红杏出墙的能量,工程师又得在电源里面加上叫做滤波器的东西去挡住他们。



但是不幸的是滤波器让能量传递的路径充满了坎坷,使得电源体积增大和热损耗增加。


于是工程师又得想其他损耗小的方法,比如在电源里面找到一个和外逃能量极性相反的能量,使外逃能量在逃跑的道路上就被负能量干掉。减少滤波器的使用。



当然这不是件容易的事情,如果你找到的负能量太强,就会喧宾夺主了,反客为主了…….



在实验室里面凑出一两台,让能量正负抵消是比较容易的事情,一旦生产成千上万台,又怎么能保证一致性呢?



工程师要解决的问题还有很多很多,做一件产品并不是比哪一项最优秀,而是比谁的短板最少。说到底做产品是个不断折中的过程。所以做一个短小轻薄的电源实在不是件容易的事情。



等到工程师在实验室好不容易攒出几台各个性能都不错的样机的时候,噩梦才刚开始……


做一个真正的台达电源产品,还必须去工厂试产。



试产的产品要被进行测试打分通关,总共三关,他们就是形影不离的EVT, DVT, PVT三兄弟!

👇👇👇
工程验证,设计验证,生产验证。

每个阶段会聚集十几个部门的各路高手给产品打分。



EVT分数过了才能到DVT, 分数不过就再改设计然后再回炉改造。


没有天赋异禀的工程师能一次就达到PVT的分数,只有痛不欲生近乎扒皮脱骨才能打通任督二脉实现量产,这时间少则大半年,多则数年。



十几门派上千个测试里面,太专业的测试大家也不懂,那么吴工挑个简单的,介绍下产品落地(drop)测试的内容:


测试1:10cm的高度,电源的6个面轮流朝下,每个面50次,一共300次,产品不能坏。


测试2:120cm的高度,电源的6个面轮流朝下,每个面1次,一共6次,产品不能坏。


简单来说就是这样:

左右滑动查看

01

02

03

04


当你幸运的(不太可能地)通过了这些测试,以为一切都结束的时候,下面一个测试又来了!


测试3:滚筒测试,就是让电源翻滚着升到50cm的高度,不确定哪个面朝下,随机扔72次。产品不能坏


简单来说就是这样:

左右滑动查看

01

02

03

04


现在氮化镓这个新兴器件成了网红,好像充电器不带个氮化镓三个字就像是英伦别墅门口没有配个带伦敦腔的管家一样没面子。


台达这款电源刚面世的时候用的只是普通的元器件,乍一看似乎没有跟上潮流。但其实反过来想,任何器件都是为了性能服务的,只用了普通的器件就达到氮化镓的效率,这就好比是聚贤庄一战中,萧峰用了一套平常的太祖长拳力克各大派300多名高手,难道不是更显得功力深厚吗?



光说不练假把式,差点忘记主题是设计拯救银河系的充电器了。


吴工的客户大都是美国人,星球大战这个片子对他们来说就是86版的西游记。吴工想把这个世界最小的60W改装成一个星球大战的机器人D2-R2。这个机器人在影片里面多次将银河系从危机中拯救出来,是响当当的正面人物。



因为公司也没有给预算,自干五也是有经济压力的,在淘宝上挑了个价值10元的D2-R2模型玩具。



虽然这个机器人不大,但是要容纳世界上最小的60W电源,已经足够大了。


切开外壳👇


底部挖掉,大小正好能容纳60W的折叠插头👇




这里要啰嗦一句,业界标称电源的体积是只算长方体部分,不算突出来的插头的,所以大家为了争我是最小,插头都是固定并且外露的,因为折叠的话需要浪费一部分的体积。虽然用户拿着戳手,但是可以号称自己体积最小。而台达的产品,没有投机取巧,从开始定位就选择了一条自虐的道路,即便拼上插头折叠空间也是要世界最小。


这款10块钱的R2D2 虽然买不了吃亏买不了上当,但是颜色涂得渣了点,配不上世界最小的充电器。


重新上了色👇


01

02

03


比对一下之前迪斯尼拍的照片,觉得还不够脏...



稍稍作旧!👇



接下来就要把充电器放入机器人身体了,问同事要了个没有外壳的60W半成品。


下面的描述专业性比较强,虽然吴工力图陈述简单化,但是还可能不自觉地凡尔赛,非专业观众如果看不下去就请自行跳过。



上图中,上方的是传统60W电源, 下面是我们小型化的60W。


和传统60W充电器相比,这个小型化的充电器只有大电容是一样的,其它都小了一半以上。


变压器部分用了电路板来替代传统的线绕结构。变压器的线圈分别画在十层电路板上,虽然这样可以节省空间,但是也带来了挑战:首先电路板的走线和传统绕线比,阻抗会比较大,会产生更多热损耗;其次电路板是多层结构,每层线圈距离近接触面积大,学过中学物理的朋友可能还记得,两块带电平行板接触面积越大距离越小,他们之间的电容也越大。这样电磁噪声传播路径的阻抗就变小了,更容易造成电磁干扰方面的问题。如果把每层线圈的距离拉开,那么又会增加漏感造成多余能量的浪费。以上这些问题,都需要工程师不断仿真调试,找到最优的布线方式以及十层电路板最佳叠构。


言归正题,在网上买了三个USB typeC的转接头,转了几次方向之后,把输出口从顶部改到侧面。



在电影上D2-R2头上的指示灯是会闪烁的。在头盔上装上LED灯,并不是难事,但是这样的改装会增加产品的待机功耗,也罢,只好牺牲吴工家的电费还原影片中的真实一幕吧。


这样就成功了!👇


吴工迫不及待地想看到客户一脸惊讶的表情,但是很不幸当吴工完成这个银河系最酷的电源的时候,疫情来了。和客户的所有互动无限期停止了。吴工可能又做了件徒劳无功的事情。


后记

吴工刚入行的时候,随一个大牛同事去台湾出差,刚好桌子有个台湾同事的产品。这位大牛同事拿起来端详许久,然后很不屑地冷笑说,这个电源是modify我的设计,但抄都不会抄。我用一个元件搞定,他竟然用了三个!正好被旁边同事听到了,他说你知不知道三个低压元件的价格加一起比一个高压元件还要便宜?

这三个元件的故事连同三个小猪三个和尚的故事一样启蒙了刚当工程师不久的吴工。让吴工知道山外有山,永远不要妄议别人的设计。没有亲历过,你猜不透个中的巧妙,也不能体会其中的苦…… 回想在这个团队工作的十几年,大家未必是技术水平最高的但都是实实在在做每个产品,从未想过投机取巧。慢慢的大家都变成了悲观的人,不相信运气也不相信捷径,只相信出来混迟早是要还的。记得一个刚入职不久的工程师和吴工说,他的太太抱怨说他自从来公司上班以后,变得越来不阳光了…… 吴工听闻捻须暗喜道,你已经出师啦!

最后加一句广告语,欢迎使用台达产品。

谢谢观赏!


扫描上方二维码

欢迎关注微信公众号

【英飞凌工业半导体】

英飞凌工业半导体 英飞凌工业半导体同名公众号是英飞凌功率半导体产品技术和应用技术的交流平台和值得收藏的资料库。提供新产品介绍,应用知识和经验分享,IGBT在线课程,线上线下研讨会发布和回放。 欢迎来稿:IPCWechat@infineon.com。
评论 (0)
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 27浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 15浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 36浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 20浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 27浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 35浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 27浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 18浏览
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 13浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 21浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦