如何利用低电平有效输出驱动高端输入开关?

原创 亚德诺半导体 2024-06-07 18:07


在无线收发器等应用中,系统一般处于偏远地区,通常由电池供电。由于鲜少有人能够前往现场进行干预,此类应用必须持续运行。系统持续无活动或挂起后,需要复位系统以恢复操作。为了实现系统复位,可以切断电源电压,断开系统电源,然后再次连接电源以重启系统。本文将探讨使用什么方法和技术可以监控电路的低电平有效输出来驱动高端输入开关,从而执行系统电源循环


为了提高电子系统的可靠性和稳健性,一种方法是实施能够检测故障并及时响应的保护机制。这些机制就像安全屏障,能够减轻潜在损害,确保系统正常运行。电源循环可以确保系统正常运行并提供保护,通常在系统无响应和不活动时工作,以使其能够持续运转。电源循环借助电源开关实现,该开关会先断开电源输入与下游电子系统之间的路径,再闭合相关路径以重启系统。一旦系统的微控制器单元(MCU)无响应,并且持续不活动,系统就会进入复位模式,开始电源循环。


较常用于实现高端电源路径或输入开关的方法是使用MOSFET。N沟道或P沟道MOSFET均可用作输入开关,每种开关的驱动要求各有不同。驱动N沟道MOSFET作为高端开关有点复杂,因此,通常会选用P沟道MOSFET。


监控电路通过监测电源电压和/或使用看门狗定时器检测是否存在脉冲,可以轻松检测到系统是否处于不活动状态。看门狗定时器功能增强了监控电路作为综合保护解决方案的能力。一旦检测到不活动状态,看门狗定时器就会置位复位输出,该输出通常是低电平有效信号。此信号可用于将微控制器置于复位模式,或触发不可屏蔽中断,促使系统采取纠正措施。虽然低电平有效输出主要用于复位微控制器,但在系统长时间无响应等情况下,也需要执行电源循环。为此,可以利用多种技术从监控电路低电平有效输出驱动高端P沟道MOSFET输入开关,从而获得更出色的系统可靠性。


使用 MOSFET 作为高端输入开关

图1为一个应用电路,使用了高端输入开关保护下游电子系统不受掉电故障影响。MOSFET 支持根据应用需要,轻松选择适当的电压和电流额定值,是系统高端开关设计的理想器件。


图1.高端输入开关实现示例,可保护系统不受掉电故障影响


高端输入开关可以是 N 沟道或 P 沟道 MOSFET。栅极电压较低时,N 沟道 MOSFET 开关断开,电源电压连接随之断开。要使 N 沟道 MOSFET 完全闭合并将电源连接到下游电子系统,栅极电压必须比电源电压高,并且差值需至少等于 MOSFET 阈值电压。因此,如使用 N 沟道 MOSFET 作为高端输入开关,将需要额外配置电路,例如电荷泵。有些保护电路还集成了比较器和电荷泵来驱动高端 N 沟道 MOSFET,同时保持解决方案的简单性。使用 P 沟道 MOSFET 作为高端输入开关不需要电荷泵,但极性相反。这种方法更简单,因而成为许多应用的常用方法。


监控电路输出驱动输入开关

在电路中使用P沟道MOSFET时,先为栅极、源极和漏极端建立适当的偏置条件非常重要。栅源电压(VGS)在控制MOSFET导通方面起着关键作用。对于P沟道MOSFET,栅极电压必须比源极电压低,并且差值需至少等于MOSFET阈值电压。此负偏置确保P沟道MOSFET偏置到其有源区,使电流可以从源极流向漏极。此外,栅源阈值电压 (VGS(th)) 决定了在栅极和源极端子之间建立导电通道所需的最小电压。对于P沟道MOSFET, (VGS(th)) 通常指定为负值,表示相对于源极而言,栅极电压需要足够低才能导通。另一个重要考虑因素是漏源电压(VDS),这是施加在漏极和源极端子上的电压。MOSFET必须在规定的VDS限值内工作,以防止损坏器件。


电压监视器或监控电路可以为其逻辑电平输出提供两种选择:低电平有效和高电平有效输出信号。前者“低电平有效”是指当输入条件为真且得到满足时,输出置为低电平;而当输入条件为假时,输出置为高电平。后者“高电平有效”是指当输入条件为真时,输出置为高电平;而当输入条件为假且未得到满足时,输出置为低电平。监控电路常用于复位微控制器,因此故障期间会使用低电平有效输出将微控制器的复位引脚拉低。利用高电平有效输出驱动P沟道MOSFET非常简单,对于开漏拓扑来说尤为如此。


监控电路的高电平有效输出连接到 P 沟道 MOSFET 的栅极。当监控的电压低于指定阈值时,OUT 引脚将栅极拉低,接通 P 沟道 MOSFET。负载因此连接到电源电压。当监控的电压超过阈值时,OUT 引脚变为高电平,P 沟道 MOSFET 关断,负载与电源电压断开连接。


图 2 中, 高压可调时序控制和监控电路MAX16052用作过压保护电路。该器件的OUT引脚直接连接到P沟道MOSFET的栅极。P沟道MOSFET的源极连接到输入电压,漏极连接到负载。外部上拉电阻连接在VCC 和P沟道MOSFET栅极之间,以在OUT引脚为低电平时让栅极保持高电平。


图2.P沟道MOSFET用作高端输入开关,可提供过压保护


当监控的电压低于MAX16052指定的固定阈值时,OUT引脚将栅极引脚拉低,导致P沟道MOSFET开关处于短路状态或导通状态。当监控的电压超过阈值时,OUT引脚变为高电平,P沟道MOSFET关断,负载与电源电压断开连接。


在某些应用中,期望的监控要求可能仅适用于低电平有效输出。这意味着,当满足监控条件时,输出信号为低电平。在这些情况下,我们必须要借助一些技术来利用低电平有效输出控制输入开关。例如,系统32秒不活动后微控制器需要复位,128秒持续不活动后系统需要启用电源循环,那么可以使用看门狗定时器的看门狗输入(WDI)引脚来检测不活动情况。当一段时间(看门狗超时时长tWD)内没有检测到脉冲或变化时,看门狗输出(WDO)变为低电平。带有看门狗定时器的MAX16155nanopower电源监控器有多个型号,可以满足所需的32 s和128 s看门狗超时时长要求。为了实现所需的功能,我们需要两个看门狗定时器,一个用于复位微控制器,另一个用于启动图3所示的电源循环例程。其中要解决的主要挑战在于需确定如何使用不同型号看门狗定时器的低电平输出,以在不活动或系统无响应状态下断开输入开关,实现电源循环。


图3.使用了两个具有不同看门狗超时时长的 MAX16155 看门狗定时器,分别用于软复位和电源循环


NPN 双极结型晶体管用作驱动电路

驱动 P 沟道高端开关的一种方法是使用 NPN 双极结型晶体管(BJT),如图4所示。此电路形成一个逆变器,将来自看门狗输出的低电平有效信号转换为P沟道 MOSFET 开关所需的高电平逻辑信号。


图4.使用NPN双极结型晶体管(Q1)从低电平有效输出驱动P沟道MOSFET(Q2)


当系统处于活动状态时,MAX16155 WDO引脚的看门狗输出处于空闲状态,通常为高电平。然后会通过限流电阻网络连接到驱动晶体管的基极引脚。WDO引脚的正常高电平输出提供必要的基极-发射极电压,作为NPN双极结型晶体管的控制输入。它在基极-发射极结上建立足够的电压,使晶体管进入导通状态。


电阻分压器连接到高端MOSFET开关的栅极引脚和源极引脚,以控制其栅源电压(VGS)。该栅源电压决定了MOSFET是保持导通状态还是关断状态。当WDO引脚激活NPN双极结型晶体管时,电流流过晶体管。这会将电阻分压器拉低至GND,从而改变电阻分压器结点处的电压。然后,此电压被施加到高端MOSFET的栅极引脚。这会产生一个电位差,栅极引脚的电位低于源极引脚的电位,导致MOSFET导通。当MOSFET处于导通状态时,电源就被提供给系统微处理器或负载。图5显示了系统处于活动状态,电源通过开关Q2提供的电流流动情况。


图5.正常运行时的电流——系统处于活动状态


然而,当微处理器无响应或无法在MAX16155看门狗定时器的预定超时时长内提供输入脉冲时,就会发生看门狗超时事件,WDO置为低电平。因此,NPN BJT Q1的基极被拉至地,导致其关断。当Q1断开时,P沟道MOSFET Q2上栅极和源极的电压将大致相等,这足以使其关断。


如图5所示,NPN双极结型晶体管的集电极引脚连接到高端MOSFET两端的电阻分压器。由于NPN双极结型晶体管处于关断状态,电阻分压器结点和栅极上的电压将大致等于源极引脚中的电压。这将导致MOSFET的栅极和源极之间的电位差为零,从而无法满足MOSFET Q2保持导通状态所需的VGS阈值。因此,随着MOSFET关断,微处理器的3.3 V电源也被断开,从而有效切断微处理器或负载的电源。系统不活动和电源循环期间的等效电路和电流如图6所示。


图6.系统不活动期间的电流流动——发生电源循环


当WDO输出脉冲宽度完成并返回高电平后,系统恢复正常运行。在此阶段,微处理器恢复向WDI引脚发送常规输入脉冲,以防更多看门狗超时事件发生。NPN双极结型晶体管返回活动状态,使高端MOSFET可以保持导通状态,确保微处理器或负载的电源不间断。图7显示了使用NPN双极晶体管的电源循环事件期间的波形。如CH1所示,在WDI信号中未检测到任何变化,这意味着系统处于不活动状态。经过超时时长后,CH2中的WDO信号置为低电平,在此期间,高端输入开关Q1断开。因此,CH3中没有测量到电压,MCU也没有电源电压,系统开始重启。CH4是负载消耗的输出电流,该电流变为零安培,表明负载已与电源电压断开连接。


图7.驱动电路中采用NPN双极结型晶体管的信号(CH1—WDI信号;CH2—WDO信号;CH3—MCU电源;CH4—IOUT).


使用NPN双极结型晶体管作为高端开关驱动器的主要优点之一是双极结型晶体管的成本较低。然而,偏置NPN双极结型晶体管需要借助电阻等附加外部元件进行适当调整。


N沟道MOSFET用作驱动电路

另一种采用N沟道MOSFET的驱动电路可用来控制高端P沟道MOSFET。与使用双极晶体管相比,这种方法有几个优点。


N沟道MOSFET的低导通电阻可确保器件上的压降非常小,因而功耗更低,能效更高。MOSFET的快速开关特性可缩短响应时间,监控系统的实时性能得以增强。MOSFET的另一个优点是开关损耗更低,工作频率更高。这有助于实现平稳高效的操作并节省电量,对电池供电等类似应用非常有益。


此外,栅极驱动要求比双极结型晶体管的要求更低,因此可以进一步简化驱动电路,减少需要的元件数量。看门狗输出可以直接驱动图8所示N沟道MOSFET的栅极。WDO的上拉电压应达到N沟道MOSFET的栅极阈值电压VGS(th)才能正常工作。当系统处于活动状态时,WDO的逻辑高电平输出电压将使Q1导通,进而Q2导通,向系统供电。与双极晶体管的情况一样,在系统不活动期间,WDO引脚的逻辑低电平输出将关断Q1并断开Q2,从而切断系统的电源电压。使用N沟道MOSFET作为驱动电路时,电源循环期间的信号行为如图9中捕获的波形所示。


Figure 8. Using an N-channel MOSFET (Q1) in driving a P-channel MOSFET (Q2) from an active low output.


图9.驱动电路中采用N沟道MOSFET的信号(CH1—WDI信号;CH2—WDO信号;CH3—MCU电源;CH4—IOUT).


本文所讨论的高端开关驱动方法不仅对无线收发器有益,而且对故障期间(例如功能和本质安全系统中的过压和过流情况)需要通过电源循环例程来提供系统保护的其他应用也很有帮助。检测级取决于发生电源循环所需的条件,既可以是检测电压故障的电压监控器,或是防止过流的电流传感器,也可以是其他技术。本文讨论了如何使用具有低电平有效输出的传感器和电源监控器来实现电源循环,从而保护下游系统。


结论

市面上有许多技术支持使用了来自监控电路的低电平有效信号来驱动高端开关,以实现电源循环。带有附加元件的NPN双极晶体管是一种成本较低的选择,可满足驱动P沟道MOSFET输入开关的要求。另一方面,N沟道MOSFET方案需要的元件更少,更容易实现,但总体成本更高。N沟道MOSFET在用作高频开关时也表现出不少优势。这两种方法都经过了充分验证,可为系统电源循环设计带来裨益。




👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 281浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 190浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 437浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 308浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 428浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 289浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 109浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 65浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 27浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 533浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 79浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 352浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 119浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦