高速ADC设计时如何考虑采样时钟的影响

摩尔学堂 2024-06-06 09:45

在使用高速模数转换器 (ADC) 进行设计时,需要考虑很多因素,其中 ADC 采样时钟的影响对于满足特定设计要求至关重要。关于 ADC 采样时钟,有几个指标需要了解,因为它们将直接影响 ADC 性能,尤其是信噪比 (SNR)。

在本文中,我们将探讨大量实验和权衡——并寻求在工作台上证明它们——以便让您更好地了解下一个 ADC 时钟设计。

时钟权衡及其对 ADC 性能的影响

我们使用了一个带有三个信号发生器的评估模块,它们提供 ADC 所需的不同信号,如图1所示。模拟和时钟输入均通过 10 MHz 参考信号锁定参考,并使用带通滤波器进行滤波,以消除来自信号发生器的任何不需要的噪声和杂散。

图 1 ADC 测试测量设置在实验室中的样子。资料来源:德州仪器

在尝试最大限度地提高高速转换器设计的性能时,有许多权衡。让我们首先从源开始:实验室中用作采样时钟源的信号发生器。在实验中,我们使用了输出功率为 +10 dBm 的 25 MHz 时钟或信号发生器。我们在相同条件下配置每个信号发生器,以了解相对相位噪声对转换器性能的影响。

然后,我们利用图 2所示的不同信号发生器以 25 MSPS 的频率对 ADC 进行时钟控制。对于每个测试源,我们将时钟保持在 +10 dBm 不变,并将模拟输入频率 (Fin) 从 2 MHz 扫描至 30 MHz。在每个频率点,我们将信号发生器的输出功率水平调整为 -1 dBFS,然后测量相对于满量程的 SNR 值(以分贝为单位)。为了保持实验的一致性,我们始终使用性能最高的信号源作为模拟输入源。

图 2 ADC 的 SNR 与 Fin@-1 dBFS 的关系显示采用不同的时钟信号源,频率为 25 MSPS @ +10 dBm。资料来源:德州仪器

如图 2 所示,当模拟频率增加时,SNR 开始下降并恶化。这个术语称为“抖动受限”,这意味着在某个时刻,ADC 时钟源、时钟信号链或两者的抖动或相位噪声将开始主导转换器的整体性能,导致在使用噪声更大的时钟源操作转换器时 ADC 的 SNR 更差。

如您所见,随着模拟输入频率的增加,每个信号发生器的相位噪声贡献略有不同,而在较低的模拟输入频率下,相位噪声的影响较小。

时钟的斜率是影响 ADC 性能的另一个特性。时钟沿的斜率越尖锐,减少抖动的可能性就越大。当采样时钟沿穿过 ADC 的采样阈值时,尽量减少时钟沿的时序不确定性也很重要。

图 3展示了使用高性能信号时钟源和低性能信号时钟源时 ADC 采样时钟斜率对 ADC 性能的影响。从图中可以看出,当将 25 MSPS 时钟源的幅度水平从 +10 dBm 降低到 -15 dBm 并保持 5 MHz 和 30 MHz 模拟输入频率的输出功率水平恒定时,随着时钟信号源变为 +5 dBm 或更小,SNR 开始下降。

图 3 SNR 与采样时钟幅度的关系显示了斜率。来源:德州仪器

请记住,每个 ADC 都有自己的灵敏度水平;因此,+5 dBm 并不涵盖所有情况。它只适用于此 ADC 测试案例,以证明时钟源上更锐利的转换速率如何帮助您从 ADC 获得最佳 SNR。

根据预期的 ADC 性能应用时钟权衡

相位噪声曲线中噪声的一个较大贡献者是噪声基底,也称为宽带噪声。如果一个源的噪声基底高于另一个源,则噪声基底较高的源将增加相位噪声曲线下的面积,从而增加指定积分带宽的抖动值(请注意,抖动是相位噪声的积分)。

带通滤波器通常有助于降低时钟信号和/或模拟输入信号源的宽带噪声。它们还能过滤掉不必要的杂散信号,即使是高性能、低噪声信号发生器也会产生这种杂散信号。

图 4展示了 ADC 的 SNR 性能与模拟输入频率的关系,使用相同的三个信号发生器作为采样时钟(滤波和未滤波两种情况)。在用于时钟的信号发生器的输出上应用滤波器时,可以清楚地看到 SNR 的改善。在性能较低、本底噪声较高的信号发生器上应用滤波器时,情况也是如此,因为其固有相位噪声本来就很差。

图 4显示了在使用不同时钟信号源时 ADC 的滤波和无滤波的 SNR。来源:德州仪器

到目前为止,我们已经使用信号发生器来演示时钟信号的各种权衡。然而,在现实世界中,大多数设计人员都会为他们的 ADC 设计选择特定的时钟设备。在某些情况下,设计人员甚至可能希望使用现场可编程门阵列 (FPGA) 作为 ADC 的采样时钟,尽管我们在 TI 不建议这样做,因为用作时钟的 FPGA 与其他时钟设备相比具有显着的抖动。

为了进一步解释 FPGA 时钟对 ADC 性能的影响,图 5展示了使用 FPGA 输出时钟为 ADC 提供时钟时对 ADC 的 SNR 性能的影响,而其他时钟设备则不然。具有较高相位噪声和较高本底噪声的时钟源会显著影响转换器的性能。

图 5这是时钟设备和 FPGA 输出时钟与 ADC 的 SNR 在模拟输入频率上的关系。来源:德州仪器

为了实现 ADC 数据表的 SNR,您可能需要考虑多种权衡,以优化您的应用的时钟信号链。这可能包括使用无源巴伦实现而不是有源设备,因为无源巴伦会将更少的噪声引入 ADC 或系统。虽然无源设备会带来更干净的性能,但它们有时在空间和成本方面存在劣势。

正如我们在本文开头提到的,具有高转换速率的快速上升信号(例如低压正射极耦合逻辑 (LVPECL) 或电流模式逻辑 (CML))可使 ADC 性能优于低压差分信号 (LVDS)。差分式接口也更好,因为它们本身可以消除任何共模噪声。将时钟设备输出配置为单端低压互补金属氧化物半导体 (LVCMOS) 信号会导致 ADC 的 SNR 性能降低。

选择合适的时钟

提供干净、高转换速率的时钟源对于最大程度地提高任何 ADC 性能都至关重要。这些基本原理在使用每秒千兆采样的 ADC 或任何高速 ADC 进行设计时也适用,尽管本文中的所有实验案例都在每秒兆采样的范围内。

了解相位噪声和抖动之间的差异也至关重要。确保将积分带宽上限设置为至少 Fs(我们建议为采样频率的两倍),以捕获采样时钟源贡献的抖动的噪声基底。请记住,宽带噪声基底是相位噪声和抖动计算的最大噪声贡献者,对 ADC 的 SNR 性能影响最大。

选择正确的时钟有助于实现 ADC 的预期性能,因为并非所有时钟设备、振荡器和信号源都是一样的。在适当的时候对时钟进行滤波,有助于降低杂散、降低宽带噪声或两者兼而有之。然而,使用滤波器时可能会有权衡,因为滤波器会降低时钟沿的斜率。

远离 FPGA 时钟。我们知道,它们在 FPGA 结构中设计和实现起来很简单,而且是一种低成本的替代方案。但如果 ADC 的 SNR 性能是您设计的重点,那么它们就无法提供所需的性能。

选择正确的时钟接口也很重要。差分信号是消除时钟信号上的共模噪声和干扰的关键。使用 LVPECL 或 CML 类型的接口可获得最佳的斜率信号质量,而不是 LVDS 或单端 LVCMOS 时钟信号接口。




6月20日-21日将在上海举办一期高级电源管理芯片设计课程,本课程将讲述电源管理电路中最常见的模块LDO和DC-DC的相关知识、设计技巧和前沿揭秘,包括模拟LDO,数字LDO,电感型DC-DC,电容型DC-DC和最近关注度很高的混合型DC-DC。

--点击图片即转至课程页面




7月16日-17日将在上海举办一期高级数模转换器(ADC)课程,本次课程首先深入探讨大规模时间交织 ADC 的交织器拓扑结构,探讨非理想情况、设计注意事项、建模技术和详细案例研究。随后,特别关注对高性能大规模 TI ADC 至关重要的外设块的设计挑战和解决方案,包括输入缓冲器和参考缓冲器。此外,还研究了极限采样器、残差放大器和时钟等关键 SAR ADC 块,通过全面的案例研究介绍了基本概念和先进技术。



--------------------------------------------------------------

今天小编带来了:ISSCC2024套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2024完整资料领取方式如下   

识别关注下方公众号
公众号对话框输入 2024 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台

摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论 (0)
  • 【拆解】+CamFi卡菲单反无线传输器拆解 对于单反爱好者,想要通过远程控制自拍怎么办呢。一个远程连接,远程控制相机拍摄的工具再合适不过了。今天给大伙介绍的是CamFi卡菲单反无线传输器。 CamFi 是专为数码单反相机打造的无线传输控制器,自带的 WiFi 功能(无需手机流量),不但可通过手机、平板、电脑等设备远程连接操作单反相机进行拍摄,而且还可实时传输相机拍摄的照片到 iPad 和电视等大屏设备进行查看和分享。 CamFi 支持大部分佳能和尼康单反相机,内置可充电锂离子电池,无需相机供电。
    zhusx123 2025-05-11 14:14 94浏览
  • 文/Leon编辑/cc孙聪颖‍在新能源汽车赛道的残酷洗牌中,威马、爱驰等数十个品牌黯然退场,极越、哪吒汽车也深陷经营困局,“跨界造车” 早已褪去曾经的光环,成为吞噬企业资金与精力的风险泥潭,尤其对上市公司而言,稍有不慎便会被拖入业绩泥沼。当行业共识已清晰显现 —— 新能源汽车市场这片红海正上演着惨烈的生存之战,石头科技创始人昌敬却逆势入局,掌舵极石汽车,其押注造车的抉择,正让本就面临挑战的石头科技主业雪上加霜。2025 年 4 月中旬,昌敬突然清空微博、抖音等社交媒体账号的举动,迅速引爆舆论场。
    华尔街科技眼 2025-05-09 20:53 30浏览
  • 1.概述MYD-YG2LX采用瑞萨RZ/G2L作为核心处理器,该处理器搭载双核Cortex-A55@1.2GHz+Cortex-M33@200MHz处理器,其内部集成高性能3D加速引擎Mail-G31 GPU(500MHz)和视频处理单元(支持H.264硬件编解码),16位的DDR4-1600 / DDR3L-1333内存控制器、千兆以太网控制器、USB、CAN、SD卡、MIPI-CSI等外设接口,在工业、医疗、电力等行业都得到广泛的应用。米尔基于瑞萨RZ/G2L开发板本文主要介绍基于MYD-Y
    米尔电子嵌入式 2025-05-09 17:38 25浏览
  • 在工业自动化领域中,PLC(可编程逻辑控制器)和 DCS(分布式控制系统)是两种最为常见的控制技术。它们凭借着高可靠性、高灵活性与高自动化程度等显著优势,在工业自动化行业中发挥着不可替代的作用,并已被广泛应用于机械臂自动装配、发电机功率调节、石油炼制、化工生产、交通信号控制与地铁轻轨控制等众多工控场景之中。一种典型的现代工业总线控制系统而数字隔离器,作为工业自动化领域中低压控制系统与高压设备进行信息传输的“安全桥梁”,其不仅能有效阻断高压电气向低压控制系统的传导路径,保障操作人员与控制系统的安全
    华普微HOPERF 2025-05-09 17:08 23浏览
  • ‌磁光克尔效应(Magneto-Optic Kerr Effect, MOKE)‌ 是指当线偏振光入射到磁性材料表面并反射后,其偏振状态(偏振面旋转角度和椭偏率)因材料的磁化强度或方向发生改变的现象。具体表现为:1、‌偏振面旋转‌:反射光的偏振方向相对于入射光发生偏转(克尔旋转角 θK)。2、‌椭偏率变化‌:反射光由线偏振变为椭圆偏振(克尔椭偏率 εK)。这一效应直接关联材料的磁化状态,是表征磁性材料(如铁磁体、反铁磁体)磁学性质的重要非接触式光学探测手段,广泛用于
    锦正茂科技 2025-05-12 11:02 100浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 180浏览
  •   定制软件开发公司推荐清单   在企业数字化转型加速的2025年,定制软件开发需求愈发多元复杂。不同行业、技术偏好与服务模式的企业,对开发公司的要求大相径庭。以下从技术赛道、服务模式及行业场景出发,为您提供适配的定制软件开发公司推荐及选择建议。   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转
    华盛恒辉l58ll334744 2025-05-12 15:55 109浏览
  •         信创产业含义的“信息技术应用创新”一词,最早公开信息见于2019年3月26日,在江苏南京召开的信息技术应用创新研讨会。本次大会主办单位为江苏省工业和信息化厅和中国电子工业标准化技术协会安全可靠工作委员会。        2019年5月16日,美国将华为列入实体清单,在未获得美国商务部许可的情况下,美国企业将无法向华为供应产品。       2019年6
    天涯书生 2025-05-11 10:41 128浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 77浏览
  • 在 AI 浪潮席卷下,厨电行业正经历着深刻变革。AWE 2025期间,万得厨对外首次发布了wan AiOS 1.0组织体超智能系统——通过AI技术能够帮助全球家庭实现从健康检测、膳食推荐,到食材即时配送,再到一步烹饪、营养总结的个性化健康膳食管理。这一创新之举并非偶然的个案,而是整个厨电行业大步迈向智能化、数字化转型浪潮的一个关键注脚,折射出全行业对 AI 赋能的热切渴求。前有标兵后有追兵,万得厨面临着高昂的研发成本与技术迭代压力,稍有懈怠便可能被后来者赶
    用户1742991715177 2025-05-11 22:44 73浏览
  • 递交招股书近一年后,曹操出行 IPO 进程终于迎来关键节点。从 2024 年 4 月首次递表,到 2025 年 4 月顺利通过中国证监会境外发行上市备案,并迅速更新招股书。而通过上市备案也标志着其赴港IPO进程进入实质性推进阶段,曹操出行最快有望于2025年内完成港股上市,成为李书福商业版图中又一关键落子。行路至此,曹操出行面临的挑战依然不容忽视。当下的网约车赛道,早已不是当年群雄逐鹿的草莽时代,市场渐趋饱和,竞争近乎白热化。曹操出行此时冲刺上市,既是背水一战,也是谋篇布局。其招股书中披露的资金
    用户1742991715177 2025-05-10 21:18 57浏览
  • 【拆解】+自动喷香机拆解 家里之前买了从PDD买了一个小型自动喷香机放在厕所里。来增加家里的温馨感,这东西看着确实小巧,精致。可是这东西吧,耗电就是快,没过几天就没电了。今个就让我拆开看看什么在捣鬼。如下是产品的实物和宣传图: 由于螺丝孔太小和限位很深。对于我的螺丝刀套装没用。只能使用那种螺丝刀细头,同时又长的小螺丝刀进行拆解 拧下三颗螺丝钉,用一字螺丝刀撬开外壳,内部结构就呈现在眼前。 内部构造相当简单,部件没多少。就是锂电池供电,通过MCU实现按键控制,段码屏控制,LE
    zhusx123 2025-05-10 19:55 56浏览
  • 体积大小:14*11*2.6CM,电气参数:输入100V-240V/10A,输出16V24A。PCB 正面如下图。PCB 背面如下图。根据实际功能可以将PCB分成几部分:EMI滤波,PFC电路,LLC电路。EMI滤波区域,两级共模电感,LN各用了保险丝加压敏电阻,继电器(HF32FV-G)用来切除NTC的,为了提高效率点,如下图。PFC电路区域,如下图。LLC电路区域,如下图。详细分析一下该电源用的主要IC还有功率器件。AC侧采用了两颗整流桥进行并联,器件增加电流应力,如下图。共模电感都有放电针
    liweicheng 2025-05-10 20:03 42浏览
  • 行车记录仪是长这个样子的,如下图。从前面拆去玻璃挡板,可以清晰的看见里面的部件,5个按键电路板,液晶显示屏,摄像头,喇叭,电池包,还有一块主电路板。液晶显示屏正面,如下图。液晶显示屏背面,如下图。喇叭,如下图。5个按键的电路板,MENU,DOWN,POWER,UP,OK总共5个按键功能,导线连接到主电路板上,如下图。电池包,303040聚合物锂电池,3.7V,300mAH,如下图。如下图。摄像头,如下图。拿去摄像头外壳,如下图。分离广角聚集镜头和PCB板,如下图。广角聚焦镜头,具体结构如下图。P
    liweicheng 2025-05-09 22:50 33浏览
  • 蓝牙耳机是长这个样子,如下图。背部图,如下图。拆开L耳的一侧,有NFC和电池包(501230 3.7V 150mAh)如下图。电池包(501230 3.7V 150mAh)如下图。NFC正面,如下图。NFC背面,如下图。如何理解NFC的工作原理呢,搜集一下相关的资料,如下图。拆开R耳的一侧,PCB正面,如下图。PCB背面,如下图。有两组红黑的线,一组连接到了喇叭,另一组连接到了MIC头上,MIC头参数如下图。蓝牙模块(CSR 8635),有蛇形PCB走线做成天线,节约了天线成本,如下图。该IC介
    liweicheng 2025-05-10 00:45 39浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦