6个技术点,带您理解用于电池储能系统的DC-DC功率转换拓扑结构

安森美 2024-06-03 18:59

点击蓝字 关注我们



近年来, 太阳能等可再生能源的应用显著增长。推动这一发展的因素包括政府的激励措施、技术进步以及系统成本降低。虽然光伏(PV)系统比以往任何时候都更加合理, 但仍然存在一个主要障碍, 即我们最需要能源时,太阳能并不产生能源。清晨,当人们和企业开始一天的工作时,对电网的需求会上升;晚上,当人们回到家中时,对电网的需求也会上升。然而,太阳能发电是在太阳升起后逐渐攀升的,但在需求量大的时段,如傍晚太阳落山后,还是无法提供能源。因此,太阳能等可再生能源越来越多地与储能系统集成, 以储存能源供后续使用。



与太阳能光伏发电配套的储能系统通常采用电池储能系统(BESS)。关于BESS的进步,如更优质、更廉价的电池已显而易见,但较少提及的是更高效功率转换方法的应用。在深入探讨现代功率转换拓扑结构之前,应该先讨论一些重要的设计考虑因素。


隔离型与非隔离型

隔离型功率转换拓扑在DC-DC阶段通过使用变压器来实现初级侧与次级侧的电磁隔离。因此,初级侧与次级侧各自拥有独立的地线,而非共用接地。由于增加了变压器,隔离型拓扑成本更高、体积更大且效率略低,在并网应用中,出于安全考虑, 电流隔离至关重要。


双向功率转换

双向拓扑结构减少了连接低压 BESS 至相应高压直流母线所需的功率转换模块数量。安森美(onsemi)的 25 kW快速直流电动汽车充电桩参考设计就是利用两个双向功率转换模块的一个例子。该双向转换器与电网连接,为电动汽车的直流电池充电。AC-DC转换阶段采用三相 6组(6-pack) 升压有源前端,而DC-DC阶段采用双有源桥 (DAB) 拓扑。DC-DC双有源桥是较为流行的拓扑结构之一,稍后将对其进行讨论。


硬开关与软开关

传统的功率转换器采用硬开关控制方案。硬开关的问题在于,当晶体管从导通状态切换到关断状态时(反之亦然) ,漏极至源极电压(VDS)会降低,而漏极电流(ID)会增加。两者存在重叠, 这种重叠会产生功率损耗,称为导通损耗和关断开关损耗。软开关是一种用于限制开关损耗的控制方案,其方法是延迟 ID 斜坡到 VDS 接近于零时导通;延迟 VDS 斜坡到 ID 接近于零时关断。这种延迟被称为死区时间,电流/电压斜坡分别被称为零电压(ZVS) 和零电流开关(ZCS) 。软开关可通过谐振开关拓扑(如 LLC 和 CLLC 转换器)实现,以大幅降低开关损耗。


两电平与三电平拓扑(单相与双相)

三电平转换器拓扑结构比两电平拓扑结构更具优势,原因有以下几点。首先,三电平拓扑结构的开关损耗低于两电平拓扑结构。开关损耗与施加在开关上的电压平方(V2)成正比,在三电平拓扑结构中, 只有一半的总输出电压被(部分)开关所承受。其他优势来自于更低的电流纹波和 EMI。同样,只有一半的总输出电压被施加到升压电感器上,从而降低了电流纹波,使其更易于滤波。EMI 与电流纹波直接相关,降低电流纹波也就降低了 EMI。由于峰值-峰值开关电压降低, dV/dt 和 dI/dt 也随之降低,从而进一步减少了 EMI。


图1.两电平拓扑结构


图2.三电平拓扑结构


宽禁带技术

如碳化硅(SiC) 等宽禁带技术进一步提高了功率转换系统的效率。由于这些器件的固有特性,它们相比传统的硅基MOSFET具有许多优势。其中一些重要因素包括:

  • 由于击穿电场和禁带能量更高, 器件的击穿电压更高;

  • 热传导率更高,从而降低了冷却要求;

  • 导通电阻更低,从而改善了导通损耗;

  • 电子饱和速度更高,从而实现了更快的开关速度。


DC-DC拓扑
1.同步降压、同步升压以及反激式转换器

同步转换器源自经典的降压和升压转换器。之所以称为同步转换器,是因为它用一个额外的有源开关取代了二极管。反激式转换器与同步转换器类似, 不同之处在于通过用耦合电感器(也称为 1:1 变压器)取代电感器,增加了隔离功能。


增加这种变压器可以起到隔离的作用,但可能需要一个电压箝位缓冲电路来抑制变压器的漏电流。由于结构和调制方案简单,这些转换器的成本较低,但与一些更先进的拓扑结构相比,损耗和电磁干扰(EMI)往往较高。


图3.同步升压


图4.同步降压


2.对称升压-降压

对称降压-升压转换器是一种应用于高功率系统中的三电平拓扑结构实例。如前所述,对于标准的两电平转换器,开关上的电压应力来自于总母线电压,而对于更高功率的系统,这一数值可能达到1000V或更高。这就需要在高功率系统中使用额定电压为1200V及以上的晶体管。


与此相反,像对称降压-升压转换器这样的三电平拓扑仅需使用额定电压为母线电压一半的器件,且还具有降低开关损耗、减小电磁干扰(EMI)以及更小的磁性元件体积等额外优势。其缺点主要源于对更多开关和更复杂控制算法的要求。


图5.三电平对称升压-降压


3.飞跨电容转换器(FCC)

飞跨电容转换器(FCC)是一种三电平转换器,这种配置能够实现双向功率流。它由四个开关、一个电感器和一个跨接在中间两个开关的飞跨电容组成。由于这是一种三电平拓扑结构,飞跨电容充当了箝位电容(或恒压源)的角色, 该结构还具有开关电压应力减半的优点。


因此,这种拓扑结构的优点包括使用较低电压、 具有更高性能开关、无源元件尺寸较小以及减少了电磁干扰。这种电路拓扑结构的缺点是必须配备启动电路,将飞跨电容的电压调节到母线电压的一半, 从而充分利用低电压开关的优势。


图6.三电平双向飞跨电容转换器


4.双有源桥(DAB)

双有源桥(DAB)是最常见的隔离型双向拓扑之一。如图7所示,其在初级侧和次级侧均采用了全桥配置。每个桥通过移相控制,即控制相对于彼此相位偏移的方波,来控制功率流方向。

此拓扑的一些优点包括:每个开关上的电压应力限于母线电压、 两侧所有开关上的电流应力大致相等,以及无需额外元件(如谐振电路)即可实现软开关。一些缺点则是由于高电流纹波,滤波电路至关重要,且在轻载条件下转换器的软开关能力可能会失效。


图7. 双向有源桥


5.LLC谐振转换器

LLC 转换器是一种可利用软开关技术的谐振拓扑结构。下图显示了这种拓扑结构在初级侧可以采用半桥或全桥配置。LLC 转换器通常以单向模式运行,但也可以通过将现有的二极管换成有源开关来实现双向运行。该电路的谐振回路包括一个谐振电感器、一个谐振电容器和一个磁化电感器。与之前的 DAB 拓扑相比,该电路的一个优点是在整个负载范围内保持软开关特性。


图8.半桥式LLC转换器


图9.全桥式LLC转换器


6.CLLC谐振转换器

CLLC 转换器是另一种可利用软开关技术和双向功率流的谐振拓扑结构。它在初级侧和次级侧均包含一个谐振电感器和一个谐振电容器。该电路和其他在初级侧和次级侧都包含全桥的电路的一个共同优点在于,其控制原理是相同的。此外,与之前的 LLC 转换器一样, CLLC 可在整个负载范围内实现软开关特性。不过, CLLC 优于 LLC 拓扑的一个原因是对称谐振回路。LLC 拓扑具有非对称谐振回路,导致反向操作与正向操作不同。具有对称谐振回路的 CLLC解决了这一问题,因此更容易实现双向充电。


图10.双向CLLC转换器


电池储能系统持续演进,并伴随可再生能源发电技术得到更广泛的应用,这催生了对更高效、更可靠功率转换系统的需求。本文探讨了现代功率转换系统的重要特征以及实现这些特征的一些常见DC-DC电路拓扑。


文中所讨论的许多电路拓扑均可利用安森美免费在线的基于PLECS的Elite Power仿真工具进行仿真, 以更深入地了解器件级和系统级效率。


⭐点个星标,茫茫人海也能一眼看到我⭐


别着急走,记得点赞在看


安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 102浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 122浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 82浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 65浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 164浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 38浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 77浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 61浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦