揭秘DC-DC转换器设计:环路补偿如何影响你的电源稳定性

亚德诺半导体 2024-05-31 10:30


环路补偿是设计DC-DC转换器的关键步骤。如果应用中的负载具有较高的动态范围,设计人员可能会发现转换器不再能稳定的工作,输出电压也不再平稳,这是由于控制环路稳定性或带宽带带来的影响。了解环路补偿理论有助于设计人员处理典型的板级电源应用问题。



控制系统理论简介

在自然界中,控制系统无处不在。空调控制室内温度,驾驶员控制汽车行驶的方向,控制煮饺子时的水温,诸如此类。控制是指对生产过程中的一台设备或一个物理量进行操作,使一个变量保持恒定或沿预设轨迹运动的动态过程。通常,自然界中的系统是非线性的,但微观过程可以被视为线性系统。在半导体领域,我们将微电子学视为一个线性系统。

可实现自动控制的系统是闭环系统,反之则是开环系统。开环系统的特点是系统的输出信号不影响输入信号。就像在图1中,G(s)是系统在复频域的传递函数。


图1. 开环系统



VI是输入信号,VO是复频域的输出信号。图2中的闭环系统具有从输出到输入的反馈路径,系统的输入节点将是输入信号和反馈信号之差。


图2. 闭环系统


当控制器迭代直到输入信号等于反馈信号时,控制器达到稳态。使用数学方法可以得到以下闭环系统方程:



然后简化方程如下:



其分母相位(式4)既是开环转换函数(也称为环路增益),其增益幅度表明反馈的强度,其带宽是闭环系统的可控带宽。当然,其相移也会叠加。应该知道,如果环路增益大于0 dB,同时相移为180°,则控制环路将以正反馈工作并形成一个振荡器。这是稳定性设计的一个关键。设计人员应确保相位裕量和增益裕量在安全范围内,否则整个系统环路将开始自振荡。



通用降压DC-DC转换器拓扑

接下来介绍降压DC-DC转换器的拓扑结构和控制环路。


图3. 降压DC-DC模块


图3显示了典型降压转换器原理图,其简化为一个交流小信号电路。它包括三级:斩波调制器、输出LC滤波器和补偿网络,每一级都有自己的转换函数,这三级构成整个控制环路。比较器和半桥构成斩波调制器,比较器输入信号来自振荡器和补偿网络。补偿网络在闭环反馈路径中实现。调制器的交流小信号增益为



其中VPP为振荡器三角波的峰峰值电压。VCC为半桥的输入功率。在控制理论中,小信号增益既是转换函数。可以看到,调制器没有相移,只有幅度增益。LC滤波器转换函数为



其中L和C分别为电感和电容。这是一种理想状态。通常,电路中存在寄生参数,如图4所示。


图4. 具有寄生参数的LC滤波器


DCR是电感L的直流等效电阻。ESR是输出电容的等效串联电阻。因此,LC滤波器的转换函数为



显然,ESR会为控制环路产生一个零点。当ESR太大而无法忽略时,设计人员应考虑ESR可能引起的稳定性问题。补偿网络用于消除寄生效应并改善环路响应。


图5. II型补偿拓扑


降压DC-DC模块展示了II型补偿网络。这种补偿电路会提供一个零点和两个极点。



还有I型和III型补偿电路。


图6. I型补偿拓扑



I型只是一个积分节点,它是一个最小相位系统,III型转换函数类似于II型。



可以看到,III型转换函数更复杂。它有两个零点和三个极点。在图7中,运算放大器(OPA)用于误差放大。运算跨导放大器(OTA)也可用于环路中的误差放大。


图7. III型补偿拓扑


图8. 带OTA的II型补偿拓扑


其传递函数类似于使用OPA拓扑电路的传递函数。输出电压误差信号先由OTA放大并转换为电流信号,再由补偿网络转换为电压控制信号。在所选择的任何类型拓扑或放大器中,零点和极点必须位于适当的频率处。



如何设计DC-DC控制环路?

我们看看采用II型环路补偿的降压DC-DC转换器的整个开环转换函数。



调制器和LC滤波器的转换函数无法轻易改变。我们只能更改补偿网络。
以II型拓扑为例。II型转换函数有两个极点和一个零点,如下所示。
Fz = 1/RzCz;
Fp1 = 0;
Fp2 = R1(Cz + Cp)/R1RzCpCz;


极点和零点位置由环路增益和环路相移确定。正极点会给波特图中的增益曲线增加–20 dB/dec斜率,并会给波特图中的环路相位曲线增加–90°相移。相反,正零点会给增益曲线增加20 dB/dec斜率,并会给环路相位曲线增加90°相移。可以看到,II型补偿环路有两个极点和一个零点,而带有寄生效应的LC滤波器也有两个极点和一个零点。寄生极点可能会迫使环路增益交越点(开环图与轴相交的点;此处增益为0 dB)处的斜率高达-40 dB/dec, 甚至更高。这意味着系统的相移将达到180°(相位裕量将达到0°),会引起自振荡。


设计人员应该避免这种风险。根据经验,我们应确保环路增益穿越频率处的斜率为–20 dB/dec。为了解决这个问题,设计人员只能更改补偿网络。更改Rz或Cz可以改变零点的位置,更改Cp可以改变次极点的位置。通常,寄生极点和零点位于非常高的频率,因此我们将Fp2放置在比Fz稍远的位置,迫使寄生极点和零点低于0 dB。Fz和Fp2都是决定环路带宽的重要因素。通过调整极点和零点的位置,可以改变环路的频率响应和相位响应以确保增益或相位裕度。因此,我们可以在环路带宽和稳定性裕量之间取得平衡。

例如,MAX25206的原理图如图10所示。在该电路中,VOUT = 5 V,ILOAD = 3.5 A,因此RLOAD = 1.43 Ω。


图10. MAX25206典型原理图


其补偿网络为II型网络,Cp = 0 pF(根据式8)。第二个极点位于无穷大频率,我们可以从R5和C2计算出第一个零点,Fz = 1/(4.7 nF × 18.2 kΩ) = 11.69 kHz。在输出LC滤波器中,我们可以通过转换函数式7从ESR和输出电容得知零点在Fz = 16.4 MHz,复极点在Fp1 = 1.8 kHz–37.6 kHz 和Fp2 = 1.8 kHz + 37.6 kHz。可以预见,Gf增益将在1.8 kHz处达到最大点。当频率大于1.8 kHz时,Gf增益会迅速下降。补偿零点Fz是对环路增益降低的补偿。此外,我们应该知道,如果环路增益大于0 dB,LC滤波器将在37.6 kHz处谐振。设计人员不应将Fz放置得太接近1.8 kHz,以确保环路增益在37.6 kHz时不会高于0 dB。AC环路仿真结果如图11所示。


图11. MAX25206 AC环路仿真


此外,III型补偿网络对于提供补偿更具潜力。当然,要评估一个系统,不仅可以使用开环转换函数和波特图,还可以观察闭环转换函数的根轨迹是否在左半平面,并分析时域微分方程。但就方便性而言,观察波特图的开环转换函数是实现稳定电源系统设计的最常见、最简单的方法。其他类型DC-DC拓扑的补偿环路、补偿方法和原理是相同的。唯一区别在于调制器,也就是环路转换函数的增益。



其他补偿网络拓扑示例

除了不同类型的DC-DC拓扑,还有采用不同方案的控制环路。与DC-DC转换器一样,MAX20090 LED控制器由电流控制环路组成。转换器检测输出电流,并将其反馈回控制环路以达到预期值。另一个例子是MAX25206降压控制器,它具有限制峰值或平均电流的功能。该器件检测输出电压和平均电流并反馈回来。它是一款双闭环控制器。通常,电流控制环路在内环,电压控制环路在外环。电流环路的带宽(即响应速度)大于电压环路的带宽,因此它能实现限流。第三个例子是MAX1978温度控制器。它包含一个驱动热电冷却器(TEC)的H桥。不同电流的方向将决定TEC是加热还是冷却模式。反馈信号就是TEC的温度。这种控制环路会迫使输出TEC的温度达到预期温度。



结论

无论何种形式的电路拓扑,用于自动控制目的的模拟电路的理论基础均是本文所讨论的理论。设计人员的目标是实现高的带宽和健壮的稳定性,同时确保环路带宽和稳定性的平衡。





👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论 (0)
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 136浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 53浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 117浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 99浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 223浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 152浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 58浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 90浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 57浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 177浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 229浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦