DSP设计笔记之F28335外设-ePWM


欢迎加入技术交流QQ群(2000人):电力电子技术与新能源 867433881


高可靠新能源行业顶尖自媒体


在这里有电力电子、新能源干货、行业发展趋势分析、最新产品介绍、众多技术达人与您分享经验,欢迎关注微信公众号:电力电子技术与新能源(Micro_Grid),论坛:www.21micro-grid.com,建立的初衷就是为了技术交流,作为一个与产品打交道的技术人员,市场产品信息和行业技术动态也是必不可少的,希望大家不忘初心,怀有一颗敬畏之心,做出更好的产品!

电力电子技术与新能源论坛

www.21micro-grid.com


小编推荐值得一看的书单电力电子技术与新能源小店


  • The Power MOSFET 应用手册

  • [视频]反激电路Flyback

  • 车用永磁同步电机控制及弱磁方法

  • [视频]IGBT模块技术参数详解

  • [视频]英飞凌双脉冲实验教具使用说明

  • 碳化硅在光伏逆变器中的应用-阳光电源

  • 华为精华资料—终端互连PCB设计规范分享

  • 复旦电赛培训_辅助电源_刘祖望_电力电子技术与新能源

  • 环路指导书LOOP Training

  • [视频]浙大碳化硅技术发展与应用介绍

ePWMenhanced pulse width modulator)为增强型脉冲宽度调制器,是电源系统中重要的控制单元。在开关电源控制环路中,PWM控制器将数字信号转化为占空比(模拟值),进行MOSFET控制,因此PWM也被称为功率数模转换器(Power DAC

 

TITMS320F28335内置了6ePWM模块,每路ePWM模块有两路输出,即EPWMxAEPWMxB

 

每个ePWM模块相互独立,在一些多管驱动的应用场景,有时需要调用多个ePWM模块,且各个模块的时序需要同步。EPWMxSYNCIEPWMxSYNCO分别为同步信号的输入和输出信号。同步输入EPWMxSYNCI只作用于ePWM1模块,输出EPWMxSYNCO作用于其他ePWM模块。

 

每个ePWM模块可以触发PIE中断和ADC转换启动(EPWMxSOCAEPWMxSOCB)。

 

每路ePWM模块包含7个子模块,分别为:

 

时基模块(Time-base moduleTB

计数比较器模块(Counter-compare moduleCC

动作模块(Action-qualifier moduleAQ

死区模块(Dead-band moduleDB

- PWM斩波模块(PWM-chopper modulePC

事件触发模块(Event-trigger moduleET

跳闸模块Trip-zone moduleTZ

 

 ePWM子模块


各个子模块连续工作,产生用户需求的PWM波形,驱动开关管,控制开关电路。时基模块负责产生PWM时钟信号,设定PWM的频率。时基时钟在计数过程中,与用户设定的计数比较值作比较,利用计数比较模块输出相应的比较触发信号。这些触发信号将作用于动作模块,进行置一或置零等操作,形成初步的PWM波形。

 

在某些应用场景,需要设置互补且具有死区PWM波形。死区模块通过对动作模块输出的PWM波形进行上升沿延时下降沿延时,或翻转等操作,形成该应用场景下的波形。

 

另外,PWM斩波,外部事件触发,错误状态保护等功能适用于不同的应用场景。这些模块均可以禁止使能


1. 时基模块TB


时基模块负责ePWM的时序控制,如控制PWM波的频率,同步各个ePWM模块时序等等。

 

时基模块会产生三个触发信号作用于动作模块:

 

- CTR = PRD时基计数器计数到周期值时(即TBCTR = TBPRD),输出该信号;

- CTR = 0时基计数器计数到0时(即TBCTR = 0x0000),输出该信号;

- CTR_Dir: 时基计数器在加计数时,该信号为高电平;时基计数器在减计数时,该信号为低电平。

 

图 时基模块


1.1 PWM的频率控制

 

PWM的频率由时基周期寄存器TBPRD)设置。时基计数器通过对周期数值的加减计数(Up-Down-Count)、加计数(Up-Count)和减计数(Down-Count计算PWM频率。下面以TBPRD=4为例说明PWM周期TPWM和频率FPWM时基周期TBPRD时基时钟TBCLK的关系。

 

1.1.1 加计数(Up-Count

 

该模式下,时基计数器从0加计数到周期值(TBPRD)。当计数到达周期值时,计数器从0重新开始加计数。

 

图 加计数模式


加计数方式下,PWM的周期TPWM = (TBPRD+1) / TBCLK; PWM的频率FPWM = 1 / TPWM

 

CCS中寄存器配置代码如下:


1.1.2 减计数(Down-Count

 

该模式下,时基计数器从周期值(TBPRD减计数0。当计数到达0时,计数器从周期值(TBPRD)重新开始减计数。


图 减计数模式


减加计数方式下,PWM的周期TPWM = (TBPRD+1) / TBCLK; PWM的频率FPWM = 1 / TPWM

 

CCS中寄存器配置方式如下:


1.1.3 加减计数(Up-Down-Count

 

该模式下,时基计数器从0加计数到周期值(TBPRD),然后再减计数0,并重复该计数方式。


图 加减计数模式


加减计数方式下,PWM的周期TPWM = 2 x TBPRD / TBCLK; PWM的频率FPWM = 1 / TPWM

 

CCS中寄存器配置代码如下:


1.2 时基周期的更新方式 - 影子寄存器

 

时基周期寄存器具有一个影子寄存器(Shadow Register。与影子寄存器相对应的,是活动寄存器(ActiveRegister,它是直接控制硬件的寄存器。

 

影子寄存器起到了缓冲器的作用,帮助活动寄存器临时存放数据,且不能直接控制硬件。影子寄存器的目的是为了防止软件配置不同步导致的系统崩溃。

 

CCS中,影子寄存器的配置代码如下:


2. 计数比较模块CC


计数比较模块负责与计数比较信号ACMPA计数比较信号BCMPB作比较,并输出比较后的事件触发信号CTR = CMPACTR = CMPB

 

- CTR = CMPA: 时基计数器的数值等于计数比较信号CMPA(即TBCTR = CMPA

- CTR = CMPB时基计数器的数值等于计数比较信号CMPB(即TBCTR = CMPB


图 计数比较模块


2.1 不同计数模式的输出信号

 

上文提到时基计数器有三种计数模式。在这三种计数模式下,若有同步触发信号输入EPWMxSYNCI,则时基计数器会加载相位值TBPHS后重新计数。

 

相位加载在CCS中寄存器配置代码如下:


2.1.1 加计数模式

 

时基计数器处于加减计数模式。在计数过程中,当计数器等于比较信号数值时,计数比较器分别输出CTR = CMPACTR = CMPB信号。

 

当时基计数器有同步触发信号EPWMxSYNCI输入时,时基计数器加载相位值TBPHS并进行加计数。


图 加计数模式下的比较信号


2.1.2 减计数模式

 

时基计数器处于加减计数模式。在计数过程中,当计数器等于比较信号数值时,计数比较器分别输出CTR = CMPACTR = CMPB信号。

 

当时基计数器有同步触发信号EPWMxSYNCI输入时,时基计数器加载相位值TBPHS并进行减计数。


图 减计数模式下的比较信号


2.1.3 加减计数模式,同步触发后减计数

 

时基计数器处于加减计数模式。在计数过程中,当计数器等于比较信号数值时,计数比较器分别输出CTR = CMPACTR = CMPB信号。

 

当时基计数器有同步触发信号EPWMxSYNCI输入时,时基计数器加载相位值TBPHS并进行减计数。


 加减计数模式,同步触发后减计数


2.1.4 加减计数模式,同步触发后加计数

 

时基计数器处于加减计数模式。在计数过程中,当计数器等于比较信号数值时,计数比较器分别输出CTR = CMPACTR = CMPB信号。

 

当时基计数器有同步触发信号EPWMxSYNCI输入时,时基计数器加载相位值TBPHS并进行加计数。


图 加减计数模式,同步触发后加计数

3. 动作模块AQ


根据时基模块和计数比较模块输出的事件触发信号,动作模块输出相应的PWM波形EPWMxAEPWMxB。上文提到这些触发信号分别为:

 

- CTR = PRD:时基计数器的数值等于周期值(即TBCTR= TBPRD

- CTR = Zero:时基计数器的数值等于0TBCTR = 0x0000

- CTR = CMPA:时基计数器的数值等于计数比较值CMPA(即TBCTR = CMPA

- CTR = CMPB: 时基计数器的数值等于计数比较值CMPB(即TBCTR = CMPB


图 动作模块


3.1 不同计数模式的PWM波形

 

动作模块在接收到事件触发信号后,决定EPWMxAEPWMxB以何种方式输出。如下是四种输出方式:

 

置一(Set High):EPWMxAEPWMxB输出高电平;

清零(Clear Low):EPWMxAEPWMxB输出低电平;

切换(Toggle):如果当前EPWMxAEPWMxB为高电平,则在接收到事件触发信号后,输出切换至低电平;反之,输出切换至高电平;

无响应(Do Nothing):在接收到事件触发后,不对EPWMxAEPWMxB做任何操作,但是仍然可以触发PIE中断和ADC转换;

 

这四种输出方式可以用符号的形式表示:

 

每个符号的上方表示触发事件,下方表示触发动作。例如“CA”表示“时基计数器数值等于CMPATBCTR = CMPA”;“下箭头”表示“清零Clear Low”。


则符号表示“当时基计数器数值等于CMPA时,输出PWM波形为低电平”。


图  动作模块的触发事件和触发动作


3.1.1 加计数模式下的PWM输出

 

该模式下PWM周期 = (TBPRD+1) x TTBCLKPWMxAPWMxB均为高电平有效(Active High,即输出占空比与CMPACMPB成正比。PWMxAPWMxB分别由CMPACMPB设置,当时基计数器数值等于CMPACMPB时,PWM波形清零(Clear Low


图 加计数模式,高电平有效


CCS的代码配置方式如下:



3.1.2 加减计数模式下的PWM输出

 

该模式下PWM周期 = 2 x TBPRD x TTBCLKPWMxAPWMxB均为低电平有效(Active High,即输出占空比与CMPACMPB成反比。PWMxAPWMxB分别由CMPACMPB设置,当时基计数器数值等于CMPACMPB时,PWM波形清零(Clear Low


图 加减计数模式,低电平有效


CCS的寄存器配置代码如下:

 


4. 死区生成模块DB

 

在许多电源拓扑的控制中,都会涉及到死区(Dead Band)。例如在全桥或半桥控制中,同一桥臂的上下管需要进行死区控制,以保证上下管互补导通,防止上下管同时导通导致短路。

 

死区生成模块以动作模块的EPWMxAEPWMxB为输入,生成具有死区的PWM信号对。


图 死区生成模块


4.1 死区生成的实现方式

 

死区生成模块由三个选择开关和两个延时器组成。两个延时器分别为上升沿延时下降沿延时

 

三个选择分别为开关:


输入信号选择:死区生成模块可以选择EPWMxAEPWMxB之一或全部作为其输入信号源,选择开关为S4S5,由寄存器DBCTL[IN_MODE]控制。

极性选择:用于决定信号是否需要反转极性,选择开关为S2S3,由寄存器DBCTL[POLSEL]控制。

输出模式选择:用于决定输出信号是由输入信号直接输出,或是经过延时或极性反转后输出。选择开关为S0S1,由寄存器DBCTL[OUT_MODE]控制。

 

不同的选择开关进行排列组合,有七种典型的配置模式:

 

模式1:绕过输入信号选择和极性选择,直接输出输入信号。

 

模式2 - 5:典型的死区和极性配置。

分别为上升沿延时RED下降沿延时FED互补且高电平有效AHC互补且低电平有效ALC高电平有效AH低电平有效AL


 典型的死区和极性配置


模式6:绕过上升沿延时。

模式7:绕过下降沿延时。


下表是几种模式下的开关控制方式


 7种控制模式的开关配置


CCS中寄存器配置代码如下: 


5. PWM斩波模块PC


在开关电源驱动控制中,隔离驱动的一种控制方式为变压器驱动。斩波模块主要应用在基于脉冲变压器驱动的PWM控制。斩波模块的为可选模块,不需要该功能时,可以禁用斩波模块直接输出。


图 PWM斩波模块


5.1 斩波模块的实现方式

 

斩波模块包含一次脉冲OSHT载波时钟PSCLK。一次脉冲提供较宽的导通时间,确保驱动变压器导通;载波脉冲负责PWM斩波,维持驱动变压器的导通。

 

斩波模块的输出波形是由输入的PWM波形和载波时钟PSCLK与运算,然后再和一次脉冲OSHT或运算得出。下图时斩波模块的输入和输出波形:

 

 斩波模块的输入和输出波形


6.跳闸模块TZ


跳闸模块的输入为外部的GPIO复用引脚。跳闸模块起到了保险开关的作用,当有外部错误信号产生时,跳闸模块可以快速响应。


图 跳闸模块


在出现错误状态时,跳闸模块的响应方式有如下四种:

 

- PWM输出高电平

- PWM输出低电平

高阻态

无操作

 

6.1 跳闸模块的实现方式

 

跳闸模块支持周期错误触发CBCCycle-by-Cycle一次错误触发OSHTOne-Shot。且每一次错误都可以触发中断。

 

周期错误触发:当周期错误事件出现时,TZCTL寄存器中定义的响应方式会立刻作用到EPWMxAEPWMxB。周期错误触发标志位TZFLG[CBC]被置一。若使能了中断,则产生EPWMx_TINT中断。

 

一次错误触发:当一次错误事件出现时,TZCTL寄存器中定义的响应方式会立刻作用到EPWMxAEPWMxB。周期错误触发标志位TZFLG[OSHT]被置一。若使能了中断,则产生EPWMx_TINT中断。

 

CCS代码示例如下:


7. 事件触发模块ET


事件触发模块的输入为时基模块或计数比较器模块产生的事件触发信号。该模块可以触发PWM中断(EPWMxINTADC转换的启动信号(EPWMxSOCAEMPWMxSOCB


图 事件触发模块


7.1 事件触发模块的实现方式

 

事件触发模块可以设置不同数量的触发事件,即

 

单个事件触发

每两个事件触发

每三个事件触发

 

中断信号EPWMxINTPIE中断向量表连接,ADC转换启动信号EPWMxSOCAEPWMxSOCBADC模块连接。

 

CCS中寄存器配置代码如下:


[注] 参考文献:TMS320x2833x Technical Reference Manual

       详细代码示例可参考TI ControlSUITE

文章首尾冠名广告正式招商,功率器件:IGBT,MOS,SiC,GaN,磁性器件,电源芯片,DSP,MCU,新能源厂家都可合作,有意者加微信号1768359031详谈。

说明:本文来源网络;文中观点仅供分享交流,不代表本公众号立场,转载请注明出处,如涉及版权等问题,请您告知,我们将及时处理。

电力电子技术与新能源通讯录:

Please clik the advertisement and exit


重点

如何下载《电力电子技术与新能源板块内高清PDF电子书


点击文章底部阅读原文,访问电力电子技术与新能源论坛(www.21micro-grid.com)下载!


或者转发所要文章到朋友圈不分组不屏蔽,然后截图发给小编(微信1413043922),小编审核后将文章发你!


推荐阅读:点击标题阅读

LLC_Calculator__Vector_Method_as_an_Application_of_the_Design

自己总结的电源板Layout的一些注意点

华为电磁兼容性结构设计规范V2.0

Communication-less Coordinative Control of Paralleled Inverters

Soft Switching for SiC MOSFET Three-phase Power Conversion


看完有收获?请分享给更多人


公告:

电力电子技术与新能源微信群,欢迎加小编微信号:(QQ号)1413043922,请注明研究方向或从事行业(比如光伏逆变器硬件),小编对电力电子技术与新能源及微电网的市场发展很看好,对其关键技术很感兴趣,如有技术问题,欢迎加小编微信,共同讨论。

    在这里有电力电子技术:光伏并网逆变器(PV建模,MPPT,并网控制,LCL滤波,孤岛效应),光伏离网,光伏储能,风电变流器(双馈、直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC(LLC,移相全桥,DAB),储能(锂电池、超级电容),低电压穿越(LVRT),高电压穿越,虚拟同步发电机,多智能体,电解水,燃料电池,能量管理系统(直流微网、交流微网)以及APF,SVG ,DVR,UPQC等谐波治理和无功补偿装置等。

PSCAD/MATLABsimulink/Saber/PSPICE/PSIM——软件仿真+DSP+(TI)TMS320F2812,F28335,F28377,(Microchip)dsPIC30F3011,FPGA,ARM,STM32F334——硬件实物。
欢迎技术人员加入,多多交流,共同进步!


更多精彩点下方阅读原文

      点亮在看,小编工资涨1毛!

电力电子技术与新能源 电力电子技术,交直流微电网,光伏并网逆变器,储能逆变器,风电变流器(双馈,直驱),双向变流器PCS,新能源汽车,充电桩,车载电源,数字电源,双向DCDC,锂电池,超级电容,燃料电池,能量管理系统以及APF,SVG ,UPQC等
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 84浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 58浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 53浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 152浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 116浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 随着航空航天技术的迅猛发展,航空电子网络面临着诸多挑战,如多网络并行传输、高带宽需求以及保障数据传输的确定性等。为应对这些挑战,航空电子网络急需一个通用的网络架构,满足布线简单、供应商多、组网成本相对较低等要求。而以太网技术,特别是TSN(时间敏感网络)的出现,为航空电子网络带来了新的解决方案。本文将重点介绍TSN流识别技术在航空电子网络中的应用,以及如何通过适应航空电子网络的TSN流识别技术实现高效的航空电子网络传输。一、航空电子网络面临的挑战航空航天业专用协议包括AFDX、ARINC等,这些
    虹科工业智能互联 2024-11-29 14:18 100浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 62浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 147浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 150浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦