中科微感MEMS氢气传感器在锂电池热失控领域的应用探索

MEMS 2024-05-24 00:01

新型储能快速发展,锂电池储能占绝对主导地位

国家能源局数据显示,截至2023年年底,全国新型储能项目累计装机31.39GW/66.87GWh。其中,2023年新增装机就达到22.6GW/48.7GWh,同比增长超过260%。而在新型储能项目中,锂电池储能占比达到了97.4%,占据了绝对主导地位。


图:中国新型储能累计投运装机规模预测(2024-2030年),单位:GW

来源:中关村储能产业技术联盟



氢气是锂电池热失控监控的黄金指标

随着锂电储能应用的快速发展,用户对锂电储能安全的监测的提出了更高要求。2023年7月1日正式实施的国家标准GB/T 42288-2022中,强调“电池室/舱内应设置可燃气体探测器,每个电池模块可单独配置探测器”。同时,国内外大量的研究报告也指出了在锂电池发生热失控的早期,就会释放出一些关键特征气体如H2(氢气)、CO(一氧化碳)、CO2(二氧化碳)、C2H4(乙烯)、CH4(甲烷)。如对这些特征气体进行有效的监测,则可以提前预防电池的热失控发生。


氢气在电池热失控特别是电池老化引起的热失控过程中是更容易释放,具有产生时间早、气体量大的特点。电池热失控过程中氢气的来源主要是石墨阳极中的积累的氢气以及锂与PVDF粘结剂的反应产生的氢气。因此,监测电池中H2的释放对电池热失控的预警具有重要意义。国内外不少文献已有报道[1,2],在电池热失控实验中H2最先被检测到(比烟雾早639 s,比火焰早769 s)有力地证明了在电池系统中引入H2气体传感器是在早期阶段阻止热失控的有效策略。


锂电池热失控气体释放成分比例


0%SOC环境下研究表明锂电池热失控气体以氢气与二氧化碳为主,市场上传统四合一模组氢气传感器因为氢气传感器的成本、性能、寿命等多种因素,导致了目前氢气传感器在储能安全监测中的实际商业应用还很少。目前主流的储能电池消防安全监测模块,近乎全部采用国外厂商的CO传感器(电化学)或者TVOC传感器(半导体电阻原理)作为锂电热失控的可燃气体监测用

图:锂电池热失控原因及失控阶段释放气体[3]



中科微感储能安全领域应用MEMS基氢气传感器

为满足储能领域的安全需求,中科微感推出了针对锂电池储能系统应用的MEMS基氢气传感器和模组,可为锂电储能系统的安全运行增加一维安全监测手段,尤其适合监测锂电池在长寿命周期运行过程中,因为老化而产生热失控的早期阶段氢气的含量变化监测。




中科微感技术团队通过和国内多家龙头企业、研究所和大学的合作,进行了多次电池热失控的实际监测实验,获得了宝贵的数据,并以此数据来优化我们的氢气传感器。通过锂电池热失控的针对性研究以及对实际使用环境因素考虑,该MEMS氢气传感器(型号CM-C107S)从材料和器件整体研发设计上就重点考虑以下几个方面的需求:1、敏感材料在高浓度VOC环境气氛下的长期稳定性要求;2、传感器批量的生产的一致性要求;3、对氢气响应的选择性需求;4、宽量程1 ppm 到15000 ppm的氢气监测范围的适配性要求


1.氢气传感器(CM-C107S)方壳电池的热失控试验及数据结

通过对方壳电池加热的方式进行热失控试验,在测试过程中,采用10颗氢气传感器,发现各传感器的响应保持较好的响应一致性。在监测氢气浓度值,测得最高近乎1.4万ppm的氢气。在热失控试验结束后,相应传感器依然能恢复原位。


2. 氢气传感器(CM-C107S)针对软包电池过程过程中的释放氢气监测数据结果

由下图可发现,以4.6 V的电压给软包电池进行过充时,本传感器有一个较明显的变化拐点,而在这过程,电池表面的温度其实变化不大,本传感器可为电池长寿命周期监测过程中提供一维有效的异常监测。

#MEMS氢气传感器特点 CM-C107S



01

高稳定性

本传感器能满足长时间高浓度TVOC环境下进行氢气的有效监测

02

监测范围

满足1~10000 ppm的氢气浓度的监测

03

稳定性和一致性

以CM-A107S氢气传感器为例,晶圆级万颗批量生产,单颗LGA封装的MEMS氢气传感器初始阻值和响应值一致性偏差逼近5%良品率接近98%

04

高响应性

在选择性上,氢气传感器做到了对乙醇、甲烷等气体几乎不响应,以及通过模组的算法的改进,可对CO有较好的选择性。

05

耐硅中毒性能

满足1~10000 ppm的氢气浓度的监测



未来发展趋势

目前,氢气传感器在多个领域发挥着重要作用,包括燃料电池系统的氢气泄漏检测、新能源车辆BMS热失控检测以及工业储氢等方面。随着政策的进一步扶持和技术的不断成熟,新能源车辆市场将迎来更广阔的发展空间,而对安全性的需求也将更加迫切,市场潜力巨大


01

BMS+传感器融合


在锂离子电池的热失控早期,现代BMS往往无法及时监测到电池故障,因为电池温度、放电电压和放电电流等特征参数变化缓慢。然而,在这一时刻,电池内部的电解液会发生分解反应,释放出氢气、一氧化碳等气体。通过检测氢气和一氧化碳的浓度,可以及时判断电池是否发生热失控,并采取相应的断电安全保护措施。相较于传统的探测器,中科微感的氢气传感器响应更加敏捷,在安全阀打开、氢气泄漏的瞬间就能做出剧烈的响应。


中科微感致力于推动BMS+多传感器技术融合,通过温度、气体、气压、压力、电流、电压等多维感知技术以获取更丰富的数据维度,对电芯状态进行综合分析及研判,实现对于锂电池储能热失控的更精准判断,以提高预警的准确性与及时性,并为处理提供了充足的时间窗口。


02

储能消防调整报警逻辑


储能企业对于储能和释能过程中的安全性十分重视,尤其是在监测气体浓度方面至关重要。近年来,储能电站作为新能源技术之一得到了快速发展,在满足电力系统新能源大规模接入需求方面发挥着重要作用。其具备显著的优势,包括灵活调节等特点。在各类储能电站中,电化学储能电站是较为常见的一种类型。根据《中国新型储能发展报告2023》,锂离子电池储能装置在已投产的新型储能装机中占比高达约94.5%。


储能舱通常采用“早发现、早处理”的原则,以确保在发生热失控时能够提前发现并进行预警,从而最大程度地减少损失。传统的单一阈值报警存在一定弊端,比如监测维度的缺失,并且由于现阶段储能储能用锂电池探测器从属消防系统参与决策,容易存在误报、漏报等问题。通过融合采集数据,以及算法结合,能够实现对热失控前、电池正常、电池异常数特征进行提取,从而实现更加精准得报警,减少漏报以及误报


中科微感氢气传感器与其他类型传感器结合的探测器,进行光、气、力、声、电、热多维度物理参数实现热失效预警,更准确地预警电站热失控,根据电站电池的热失控特性,设定相应的预警阈值,及早发现特征气体,使得预警时间比其他类型传感器提前5-15分钟


在未来,中科微感将继续致力于氢气传感器技术的研发与创新,以满足不断增长的市场需求和行业挑战。我们将不断提升产品性能和可靠性,拓展应用领域,助力氢能产业的健康发展。通过不懈的努力和持续的创新,我们将为建设更安全、更智能的氢能社会贡献更多力量,引领氢气传感技术的未来发展,共创美好明天。


致谢:在产品的研发改进及测试过程中,中科微感感谢合作伙伴的支持,提供了商用电池热失控测试条件


【1】Swartz S L, et al. Lithium-ion battery off-gas monitoring for battery health and safety[J]. NEXCERIS: Lewis Center, OH, USA, 2017.

【2】Jin Y, et al. Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning[J]. Joule, 2020, 4(8).

【3】Wang Z, et al. Gas Sensing Technology for the Detection and Early Warning of Battery Thermal Runaway: A Review[J]. Energy & Fuels, 2022, 36(12).

延伸阅读:
《环境气体传感器技术及市场-2023版》
《盛思锐气体传感器SGP40产品分析》
《盛思锐气体传感器SGP30产品分析》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 161浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 234浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 75浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 86浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦