某车企安全负责人:车载以太网络威胁检测分析

谈思汽车 2024-05-22 11:29

 智能汽车安全新媒体 

作者简介

猪皮苏:某新能源车企车联网安全负责人,以打工猪态度勤恳深耕车联网场景安全解决方案;

吐司2:某新能源车企资深渗透工程师,在应急响应、入侵对抗、研发安全方面拥有丰富检验;

yong.H:某新能源车企基础安全负责人,多家互联网大厂经验,专注于红蓝对抗,以攻促防建设企业安全,重点工作是研究和防御复杂的网络威胁,提升企业的安全防护能力;

Zzb:某新能源车企安全负责人,专注于企业安全建设和安全体系建设,拥有丰富的安全专业知识和经验,致力于保护企业的资产和信息免受威胁;

腹黑、LDrakura、安安小飞飞、HOPE、Winghr对本文亦有贡献。

作为车联网领域的信息安全工作者,笔者在近两年的实际工作中,能够明显感受到汽车智能化和互联化程度不断提高,这使得智能网联车辆面临着日益增多的网络安全威胁。

同时,全球多个国家和地区均已制定了各自的监管法规和标准,这也对我国汽车品牌在海外市场的发展提出了一些硬性安全条件。在基于安全威胁和法规遵从要求的基础上,笔者希望通过本文,循序渐进地探讨一下汽车端侧入侵对抗防护的新思路及可行性。

01

车端NIDS应用概览

目前,我们看到市面上大多数车端IDPS产品,多数基于主机安全模式下的HIDS与NIDS进行移植实施。但由于车端本身的算力性能限制,直接进行全量由主机端向车端的策略平移,落地性不仅非常差,而且实际防护效果也非常不理想,主要体现在车端特有场景难以匹配,容易造成实际硬件性能与算力浪费。因此,识别车端与原有主机的差异化攻击场景及部署方式是量化车端IDPS策略使其真正有效可用的前提。

车端 NIDS作为IDPS系统的重要组成部分,它的主要职责只有一个:实时监测车载网络流量,及时发现并应对潜在的安全威胁。NIDS探针在车端可通过利用多种检测策略对流量包进行深度分析和协议识别检测网络威胁。

目前,车端NIDS探针主要集中于对识别已知攻击模式的识别与防御,相信随着技术发展,后续亦可通过行为分析等手段持续提升能力,主动发现未知威胁,从而提供更为全面的网络安全防护。

部署架构

NIDS主要包含CAN网络(控制器局域网)的检测分析,如CAN DLC 检测、周期检测、上下文检测、UDS 协议检测等;以太网络的检测分析,如 DDoS 攻击、SOME/IP 检测、DoIP 检测、扫描检测、深度包检测等。这些特点和传统的IDS系统非常相似。

在当前跨域融合的电子电器架构中,一般情况下从上到下分为链接传输层(TBOX)、跨域融合层(IVI、ADAS、GW)、区域控制层(VIU)、传感执行层,其中NIDS往往需要部署在TBOX、IVI、ADAS这几个主要控制器上,从而更好地抓取网络流量(均可以定义为网络边界),在一些ECU、VID层面反而不适合部署NIDS。在此,我们想强调的核心差异点在于:

①车载NIDS的部署网络边界差异

传统的NIDS部署模式通常在网络边界POP点或网络核心进行流量镜像,以此实现对网络流量的监控和分析。然而,车载网络具有其特殊性,车载NIDS的部署模式需充分考虑近端组网的场景,且涉及多个零部件的协同工作。在这种场景下,以零部件为单网络部署节点成为了一种现有的较为普遍的方案。这种部署模式将NIDS直接部署在车载网络的各个节点上,实现对每个节点的实时监控和分析。

②部署节点的判定标准差异

车载NIDS的部署点也并非可以以网关、ADAS、IVI、TBOX一概而论。首先,我们需要考虑车端电子电器架构的组网特点。车载网络通常由多个零部件组成,这些零部件在网络上的对外暴露面各不相同。因此,我们需要根据零部件的暴露面进行标准评估,以确定哪些节点需要部署NIDS,可参照如下判断标准:

  • 在通信架构中的位置(目前ECU在第几层网络)

  • 访问点(是否有CAN、以太或其他网络访问点) 

  • 承载的功能在网络安全层面的分级 

常见网络威胁检测的方法

NIDS探针基于网络流量的特征,一般可以基于以下几种方式来进行威胁检测:

基于签名的检测:基于已知攻击模式的特征签名进行匹配检测,适用于已知威胁的快速识别。

基于行为的检测:通过分析网络流量的行为模式,识别异常或可疑活动,适用于未知威胁的检测。

基于统计的检测:利用统计学方法分析流量特征,发现偏离正常模式的异常流量。

每种类型的检测策略都有其独特的实施方式和特点,每种检测策略亦都有其优势和局限性,因此在实际应用中,NIDS通常会采用多种策略相结合的方式,以提高检测的准确性和全面性。

02

车载以太网络威胁检测分析

网络威胁检测需要包括以下内容:

1. 源地址与目标地址:通过分析流量包的源地址和目标地址,可以判断流量是否来自可信的设备或网络。

2. 端口号:端口号用于标识不同的服务或应用。通过检查端口号,可以判断流量是否与目标服务或应用相关。

3. 协议类型:不同的协议类型具有不同的结构和特点。通过识别协议类型,可以进一步分析流量包的具体内容。

4. 数据包内容:数据包的内容是判断是否存在恶意攻击的关键。通过分析数据包的内容,可以检测是否存在异常行为或攻击模式。通过分析流量包的源地址和目标地址,可以判断流量是否来自可信的设备或网络。

在实际应用中,网络威胁检测的实现包括四层检测和七层检测两种方式。四层检测主要关注网络层和传输层的协议信息,一般会提取出5元组(协议,源IP, 源端口, 目的ip, 目的端口)。nids会检查通过车载网络的每个数据包,确保只有符合安全策略的连接能够通过。

例如,对于白名单的流量,nids会允许其通过;而对于黑名单或者异常连接发出警告。在实施过程中,nids通过维护一份白名单或黑名单,来定义哪些连接是合法的,哪些是需要告警的。同时,nids利用流量模式分析技术,对流量包的频率、大小、持续时间等特征进行分析,以识别可能的异常行为。

而七层检测则更深入地关注应用层协议的内容,能够对传输的数据包进行更细致的分析。通过深度包检测(DPI)技术,nids能够解析数据包中的应用层协议,如DNS、MQTT、SSH、SOME/IP、DoIP、TLS等,并检查其内容是否包含恶意代码、广告、非法网站等威胁。

我们认为,在车载网络系统中,采用七层网络威胁检测方式尤为重要,因为许多车载应用和服务都依赖于应用层协议进行通信。通过七层检测,nids能够实现对这些应用的实时监控和威胁识别,从而保护车辆免受网络攻击。其中:

链路层

在链路层,我们主要监测的是mac地址。MAC地址用于标识网络中的设备,通过分析MAC地址,可以判断流量是否来自可信的设备。后续用于识别mac地址是否被伪造,因为在车端场景下车内零部件mac地址大概率不会频繁变更,因此,如果发现某个MAC地址频繁变或与其他设备的MAC地址冲突,那么可能意味着该MAC地址被伪造了。

另外,如果某个MAC地址突然出现在不应该出现的网络位置,或者其流量模式与正常行为不符,那么这可能意味着存在潜在的安全风险。

网络层

在网络层,我们主要关注的是Ip地址,包含源ip、目的ip、端口,以及此处可以检测到是当前数据包是基于tcp还是udp协议。IP地址就像是每个设备的“身份证”,源IP还是目的IP,是所有数据包传输的起点和终点。通过解析IP地址,我们可以跟踪数据的来去。而端口则像是设备上的“门牌号”,因为不同的应用程序或服务会使用不同的端口进行通信。

传输层

在传输层中,我们主要解析出端口数据包含源端口和目的端口,源端口指的是数据发送方所使用的端口号,而目的端口则是数据接收方所监听的端口号。通过对端口进行恶意扫描是常见的攻击手段,攻击者通过扫描目标主机的端口,尝试发现其开放的服务并进而实施攻击,往往端口的探测与扫描也是攻击的开端。因此监控控制源端口和目的端口的使用情况尤为必要。

应用层

我们认为依据欧盟R155法规与《汽车整车信息安全技术要求》,车载nids所需关注的攻击场景主要聚焦于车端侧攻击,基于车端实际可能实施的攻击场景,车载nids目前有效的检测策略其实需要在原有传统主机安全上做大量的减法,而且完全可以被量化出一个基础的策略集。

在此,我们总结了以下车载常用协议及我们认为实际在车端需要关注的攻击类型与原因:

03

部分车端入侵威胁的典型检测场景

我们在此总结了一些常见车端nids的检测实例供参考,这些场景均参照了R155标准的相关解读。

场景1、非法端口探测扫描

在扫描行为中,数据包被用来探测目标系统的开放端口、服务状态等敏感信息,从而为后续的攻击行为提供情报。在感知非法的端口探测扫描时,车载NIDS探针主要关注以下几个特征值:

  • 数据包数量与频率:非法扫描行为通常会在短时间内发送大量的数据包。

  • 数据包类型与内容:扫描行为通常包含特定类型的数据包,如SYN扫描、ACK扫描等。

  • 源IP地址与端口:攻击者通常会使用特定的IP地址和端口进行扫描。

常见扫描类型及其数据包特征

场景2、 TCP-DDoS攻击

DDOS攻击的策略库已经非常成熟了,覆盖了从传输层到应用层各种场景。我们认为,车载NIDS在检测TCP DDoS攻击时,主要关注以下字段和特征:

场景3、恶意软件检测-车端木马后门

攻击者通常会利用网络流量来发起攻击,因此分析网络流量中的特征可以帮助我们发现攻击行为。常见的攻击特征包括:

  • 通信特征:攻击者会与特定的域名和IP地址进行通信,例如C2服务器、僵尸网络控制中心等。

  • 协议特征:攻击者会使用特定的协议进行通信,例如HTTP、TCP、UDP等。

  • 数据特征:攻击者会发送特定的数据,例如恶意代码等。

  • 行为特征:攻击者会表现出特定的行为,例如网络扫描等。

以Metasploit生成的木马TLS证书特征分析为例,Metasploit是一款常用的渗透测试工具,可以生成各种类型的木马。这些木马通常会使用TLS(Transport Layer Security)协议进行加密,以隐藏网络流量。我们可以通过分析木马的TLS证书来识别其恶意行为。

Metasploit生成的木马TLS证书通常具有以下特征:

  • 自签名证书:大多数Metasploit生成的木马都使用自签名证书。这意味着证书是由木马本身签名的,而不是由受信任的证书颁发机构(CA)签名的。

  • 无效的证书:Metasploit生成的木马证书通常包含无效的信息,例如不正确的域名或组织名称。

  • 可疑的证书指纹:Metasploit生成的木马证书的指纹通常与已知的恶意证书指纹相似。我们分析代码可以发现证书的字段生成使用的是faker库、由于faker库每个字段都是有限的,我们可以根据这个生成特征库来识别木马。

04

结语

除以太网外,CAN网络在车载通信中扮演着至关重要的角色,然而却存在着多种安全问题。目前,CAN总线缺乏足够的安全保护措施,导致信息的保密性、完整性、可用性、真实性和不可抵赖性受到威胁。消息在总线上可以被任意节点读取,且缺乏消息认证码或数字签名保护,增加了信息泄露和篡改的风险。

此外,对ECU进行固件修改时使用口令等弱认证技术,容易受到攻击。CAN协议的滥用也存在,攻击者可以利用总线仲裁机制进行拒绝服务攻击,或发送恶意错误帧消息使ECU失效。常见的攻击方式包括丢弃、修改、读取、欺骗、洪泛和重放攻击,以上都对车载CAN总线网络构成潜在威胁,后续我们也希望在车端HIDS上继续研究更新,并于期待下次与大家再次探讨。

内容来源:

https://mp.weixin.qq.com/s/3rNX-oGd32cYiV4BIh5jOA

-  THE END  -


 专业社群 

因文章部分文字及图片涉及到引用,如有侵权,请及时联系17316577586,我们将删除内容以保证您的权益。

谈思汽车 智能汽车安全新媒体
评论
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 55浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 54浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 53浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 155浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 55浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 65浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 47浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 79浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 107浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 111浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦