综述:超构表面赋能量子光子学

原创 MEMS 2024-05-22 00:01

量子信息技术被认为是20世纪重大科学进步之一,近几十年来取得了令人瞩目的进展,尤其是在量子通信、量子计算和量子计量领域。量子信息领域的基本处理单元被称为量子比特(qubit)。与计算机科学中只能表示0或1的的经典比特不同,量子比特可以处于叠加态,这样的量子比特可同时表示0和1,展示了独特的量子并行性。此外,量子比特之间还可以发生非经典相关的纠缠。量子纠缠和量子并行性的存在使量子计算能够以并行的方式执行,与经典计算相比,计算速度明显提高,尤其是当大量量子比特纠缠的情况下。此外,由于单个量子比特的不可分割性和量子态的不可克隆定理,量子信息技术从根本上排除了未经授权截获并复制量子态的可能性。量子信息技术的这些固有优势使其成为推动下一代信息技术发展的理想方案。可以利用一系列物理系统来实现量子比特,如光子、量子点(QD)、束缚原子、核磁共振及超导电路等。

在这些系统中,光子与其环境的耦合相对较弱,因此能够维持良好的量子相干性。此外,光子还提供了编码量子比特的各种维度,包括路径、偏振、相位、频率、自旋角动量(SAM)和轨道角动量(OAM)。光子量子比特可以轻松通过普通光学元件进行操作和传输,是量子信息的理想载体。虽然传统光学元件可以满足在自由空间应用中控制光子量子比特的要求,但它们体积庞大、对准过程复杂、机械耐久性有限,不顺应量子信息系统正在进行的微型化和集成化趋势。幸运的是,近年兴起的紧凑型光子器件——超构表面(metasurfaces)的快速发展为解决这一难题带来了关键的突破。


超构表面驱动的量子光子学

在过去的十年中,超构表面凭借精确操纵光的振幅、相位和偏振方面的卓越能力,而成为研究的热点。超构表面的基本构建块被称为超构原子(meta-atoms),通常是由介电材料或金属材料制成的亚波长谐振器。与通过沿不同光路累积相位变化来操纵光的传统光学元件不同,具有超薄厚度的超构表面通过利用超构原子中电磁场的局部谐振或非谐振模式来塑造光的波前。尽管超构原子具有离散性,但由于其亚波长尺寸,超构表面对光的操纵可视为准连续的。超构表面相位控制的物理原理可分为三类:谐振相位、传播相位和几何相位。谐振相位和传播相位取决于超构原子的形状和大小,而几何相位则受超构原子空间取向的影响。超构表面具有重量轻、尺寸小、可集成、坚固耐用及多功能等特点,加上超构原子无与伦比的设计灵活性,因此已被广泛用于替代传统波片、透镜、光栅、全息图和涡旋光束发生器。特别是近年来,对超构表面的研究已经超越了经典光学的范畴,激发了人们将这些多功能超构表面融入量子光子学领域的兴趣。

据麦姆斯咨询介绍,南开大学陈树琪实验室研究团队在Advanced Photonics Research期刊上发表了一篇题为“Metasurface-Empowered Quantum Photonics”的综述文章。该文章综述了快速发展的量子超构表面领域近期取得的重大进展。首先,文章重点介绍两种基于超构表面的量子光源,即单光子发射器(SPE)和自发参量下转换(SPDC)光子对光源。SPE和超构表面的集成可以通过两种配置实现,其中超构表面可以作为超构透镜或光子-质子-光子转换器,以提高收集效率,并在多自由度中设计单光子发射。至于SPDC光子对光源,超构表面通常支持各种谐振以提高状态密度,促进非线性晶体中的SPDC过程。具体来说,超构表面可用于在远场产生各向异性量子真空(AQV),这为调节多级原子量子发射(QE)的辐射特性提供了一种切实可行的策略。然后,该文章综述了在超构表面帮助下对量子态的操控和测量。通过利用超构表面提供的设计灵活性和多功能性,相继展示了纠缠态紧凑高效的生成、蒸馏、转换和分布。无损电介质超构表面可用于取代传统的笨重投影元件,从而构建紧凑而坚固的量子态断层成像系统,实现量子态的高保真重建。最后,该文章总结了超构表面在非经典光探测中的几种示例应用,包括量子传感、量子弱测量、量子光的相干完美吸收和量子成像。


SPE集成超构表面


基于超构表面的SPDC光子对光源

由于超构表面的复杂纳米结构,其对量子光的操纵不可避免地受到制造误差的限制。超构表面的制造误差通常源于蚀刻不足或蚀刻过度,这可能导致所有超构原子在保持周期性接近设计值的同时,实际横向尺寸大于或小于设计值。这些误差会使超构表面偏离其预期功能,例如破坏量子光源输出光束的频率、方向、偏振和模式纯度,降低量子态控制和测量的保真度,以及其它可能的后果。有几种方法可以解决这一问题。一种策略是优化超构表面的制造工序,以提高制造精度。另一种方法是利用几何相位超构表面代替谐振相位和传播相位超构表面。后两类超构表面的超构原子尺寸是关键因素,而几何相位超构表面则不同,它通过旋转超构原子的方向来实现相位控制,对超构原子尺寸误差具有很强的鲁棒性。对于超构表面的某些应用,例如量子态测量和重建,通常的做法是在进行量子测量之前用经典光对制造的超构表面进行表征,以确定包括超构表面所有制造缺陷在内的传递矩阵。利用传递矩阵,可以对量子测量结果进行精确修正,从而有效减少制造误差对量子测量结果的影响。


超构表面辅助的量子态操纵和测量


量子超构表面的丰富应用

尽管所有这些令人瞩目的进展都表明,超构表面通过同时控制光子的多个自由度为探索量子现象引入了一种新范式,但超构表面在量子光学中的全部潜力仍有待挖掘。要克服现有挑战,还需要进一步的研究。

另一方面,绝大多数用于操纵量子态的超构表面都缺乏实时可调谐性或可重构性。由静态结构组成的超构表面通常具有固定的光学功能,因此不适合满足量子信息处理复杂多变的要求。一种有效的方法是将超构表面与可调光学材料(例如石墨烯、半导体、液晶、非线性材料和相变材料等)集成。

此外,研究超越经典超构表面设计原理的创新方法,以创建先进的量子超构表面,也是一个值得深入研究的方向。例如,最近有研究提出了一种名为“散射全息”的启发性方法,用于设计量子发射器耦合超构表面,能够以预先设计的尺寸、偏振和传播方向产生单光子发射。全息超构表面根据参考波和信号波产生的干涉图案构建。类似这种新颖的设计方案,将为量子超构表面的发展注入新的活力。可以想象,超构表面与量子光子学的融合将大大加快量子物理的新发现,促进量子信息系统的片上集成。

论文链接:
https://doi.org/10.1002/adpr.202300352

延伸阅读:
《超构透镜(Metalens)专利态势分析-2024版》
《光学和射频领域的超构材料和超构表面-2024版》
《量子技术及市场-2024版》
量子传感器技术及市场-2023版》
《量子计算技术及市场-2024版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 111浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 390浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 183浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 339浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 121浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 423浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 195浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 100浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 49浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦