纯电动汽车动力电池系统解析



关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

一、动力电池系统


动力电池系统由电池箱外壳、电池包、电池管理系统、辅助元器件4部分组成,如图1所示。动力电池系统由电池箱外壳、电池包、电池管理系统、辅助元器件4部分组成,如图1所示。


图1 动力电池箱


1.外壳


电池箱安装在车辆底板下方,下壳体材质为铸铝或钢板,上壳体材质为玻璃钢,上下壳体之间有密封胶,后侧面设有高压插接器、低压插接器,上方设有维修开关。电池箱密封等级为IP67,“6”表示防护灰尘进入,“7”表示在深1m的水中防浸泡30min。


2.电池包


以某车型举例,采用磷酸铁锂电池,单体额定电压3.2V,连接方式1 P100S,如图2所示。每个模块只有1个单体,10个模块串联的模组有4个,12个模块串联的模组有5个,电池包模块数=10×4+12×5=100个,电池包额定电压=3.2V×100=320V。


图2 1P100S电池包


电池包容量((Ah)=模块容量=单体容量×并联单体个数。


电池包能量(VAh)=电池包额定电压×电池包容量。


可以看出,并联单体的个数越多容量越大,串联模块的个数越多能量越大。例如EV200磷酸铁锂电池包额定电压320V,额定容量80Ah,电池包能量=320× 80=25.6kWh。


北汽新能源汽车公司EV200纯电动车装备两种动力电池,见表1,可以看出三元锂电池的各项性能均好于磷酸铁锂电池。


表1 EV200动力电池


3.电池管理系统


(1)电池管理系统组成。包括硬件和软件,硬件由主控盒BMS、从控盒、高压盒、电压采集线、电流传感器、温度传感器、电池内部CAN总线等组成,如图3所示。软件由监测电压、监测电流、监测温度、监测绝缘电阻、SOC估算等程序组成。


图3 电池管理系统框图


(2)主控盒的作用。如图4所示:①接收从控盒发来的实时模块电压和模组温度,并计算最大值和最小值;②接收高压盒发来的总电压和总电流;③通过新能源CAN与VCU、充电机等通信,通过快充CAN与直流充电桩、数据采集终端通信;④控制充放电电流(执行部件是车载充电机、直流快充桩和电机控制器);⑤控制动力电池加热。


图4 主控盒作用


(3)从控盒作用。亦称作电池信息采集盒,如图5所示:①实时监控每个模块电压;②实时监测每个模组的温度;③监测SCO值;④将以上监测到的数据传送给主控盒。


图5 从控盒作用


主控盒大多安装在电池箱内,也有安装在电池箱外。安装在电池箱内的,采取1主N从,称作分布式;主从合一称作集中式,如图6所示,这种型式如线束破损则容易产生安全隐患,还容易使BMS短路而烧毁。


图6 集中式BMS


(4)高压盒作用。如图7所示:①监控动力电池总电压,包括主继电器的内外四个监测点(主正继电器内、主正继电器外、主负继电器内、主负继电器外);②监测充放电电流;③监控高压系统绝缘性(见后面介绍);④监控高压连接情况;⑤将以上监测到的数据传送给主控盒。


图7 高压盒相关电路


4.辅助元器件


辅助元器件如图8所示,包括动力电池系统内部的电子电器:主正继电器、预充继电器、预充电阻、主负继电器、高压熔断器、加热继电器、加热熔断器、电流传感器、高压插座、低压插座,还包括密封条、绝缘材料等。


图8 辅助元器件


 (1)主正继电器,如图9所示,由BMS控制,作用是接通/断开动力电池正极。


图9 主正继电器


(2)预充继电器、预充电阻,如图10所示,由BMS控制,作用是接通/断开动力电池预充正极。预充电阻一般为100Ω,目的是通入小电流,预充电时检测单体电池有无短路;上电时先用小电流给电机控制器和电动压缩机控制器的电容器充电,因为电容器在充电开始时处于短路状态。

图10 预充继电器、预充电阻


(3)主负继电器,由整车vcu控制,接通/断开动力电池负极。


(4)高压熔断器,如图11所示,作用是防止放电过电流,防止能量回收过电流。内部是银熔断片和石英砂,具有快速熔断的特点,一般规格为250A,500V。直流熔断器不同于交流熔断器,交流电正弦波交替传导,每周波有过零点,此时电量值最低电弧容易熄灭。直流电是恒定电压,当出现短路故障,依靠熔断片迅速熔化以及石英砂扩散吸附和冷却熄灭电弧。带有维修开关的纯电动车,高压熔断器装在维修开关内,方便更换。


图11 高压熔断器


(5)电流传感器,型式有分流器和霍尔传感器两种,如图12所示。分流器是一个阻值很小的电阻,当有直流电通过电阻时产生电压降,根据欧姆定律,电流=电压/电阻,就可计算出电流值。霍尔传感器是半导体材料制成的磁电转换器件,高压电缆穿过该器件,电缆周围产生磁场;传感器输入端通入电流,输出端产生与高压电缆电流成比例的霍尔电势,就可计算出电流值。


图12 电流传感器


(6)加热继电器与加热熔断器,如图13所示,适用磷酸铁锂电池,该电池低温充放电性能差,在低温如不加热充电或放电,会降低电池循环寿命,电池温度范围为0~50℃。


图13 加热继电器


(7)高压插座,用来连接通往高压盒的高压电缆,EV200电动车高压插座如图14所示,插孔1为高压-,插孔2为高压+。


图14 高压插座


(8)低压插座,用来连接低压线束,北汽新能源EV200的低压插座示意图如图15所示,端子含义见表2。


图15 低压插座


表2 低压插座端子定义


二、BMS控制原理


1.BMS功能


BMS(Battery management system)是保护和管理电池的核心部件,相当于人的大脑,不仅要保证电池安全可靠地使用,而且要充分发挥电池的能力和延长使用寿命。


(1)控制预充、主正继电器。通过继电器触点闭合与断开,完成动力电池的预充、充电、上电、下电等程序。


(2)数据采集。①高压盒采集动力电池总电压、动力电池总电流;②从控盒采集每个单体(模块)电压、每个模组的温度。


(3)状态分析。①SOC剩余电量评估,让驾驶员了解续航里程,方法有电荷计量法、断路电压法、卡尔曼滤波法、人工神经网络法、模糊逻辑法;② SOH健康程度评估,评估电池健康(老化)程度、温度对电流影响,供评估SOC参考。


(4)均衡控制。


①电池不一致性,是指随着循环充放电次数增加和工作环境变化,出现单体电压、容量、内阻不一致,降低电池容量,影响电池使用寿命。如图16所示,先看均衡前,某个模块已达到放电终止电压(下限保护电压),其他模块还有一定的电量,这时不能继续放电;充电后某个模块已达到充电终止电压(上限保护电压),这时不能继续充电;可以看出均衡前电池总电量减小。再看均衡后,增加了电量差,电池的电量增加。图中每个模块电量的长短不同,说明容量不一致。


图16 均衡前后的电量对比


②均衡控制按均衡电路分类:集中式均衡(共用一个均衡器)、分布式均衡(每个单体一个均衡器)。


③均衡控制按控制方式分类:主动均衡(能量高的单体向低的转移)、被动均衡(对能量高的单体放电)。


④用诊断仪读出各模块电压,如图17所示。未装车载均衡器的纯电动车,需要拔开从控盒插头,将该插头插入专用均衡器,对每个模块进行均衡。


图17 各模块电压


(5)热管理。①在低温情况下对电池包加热。②电池自身有内阻,电流流动产生热量,热量累积温度升高,当超出正常温度会影响电性能和寿命,BMS监测各模组温度,通过冷却液循环或通风散热。


(6)安全保护。①过电流保护,电流超过安全范围,采取安全保护。②过充电保护,充电电压高于上限,BMS断开充电回路。③过放电保护,放电电压低于下限,BMS断开放电回路。④过温保护,温度高于或低于正常范围,禁止充、放电。⑤绝缘监测,BMS实时监测高压正、高压负与车身搭铁的绝缘电阻,如低于安全范围,断开高压电并发出警告。


2.充电方式


(1)慢充电。BMS通过新能源CAN连接VCU、驱动电机控制器、车载充电机、DC/DC控制器、PTC控制器、电动压缩机控制器、诊断接口。早期有的车型BMS通过慢充总线连接车载充电机、数据采集终端。当插上慢充枪,VCU唤醒BMS由睡眠状态转为工作状态,VCU接通电池箱内的主负继电器,BMS先接通预充继电器,再接通主正继电器而断开预充继电器。BMS根据动力电池总电压、模块电压、模组温度,由充电机调节充电电流,慢充电过程需要8~10h(常温25℃,0→100%SOC)。


(2)快充电。BMS通过快充CAN连接直流快充桩、RMS数据采集终端、诊断接口。当插上快充枪,BMS将充电需求送给直流快充桩,由直流快充桩调节充电电流,快充电过程需要30~45min(常温 25℃,30%→80%SOC)。


3.充电前加热


从控盒测量每个模块实时温度,反馈给主控盒,如低于设定值,主控盒指令加热继电器闭合,高压电流通过加热熔断器和加热膜。


(1)慢充加热回路,如图18所示:交流充电桩→车载充电机→高压盒+→加热继电器触点→加热膜→加热熔断器→高压盒-→车载充电机→交流充电桩。


图18 慢充加热回路


(2)快充加热回路,如图19所示:直流充电桩→高压盒+→升加热继电器触点→加热膜→加热熔断器→高压盒→升直流充电桩。


图19 快充加热回路


4.预充电


(1)慢充预充电回路,如图20所示:交流充电桩→车载充电机→高压+→预充继电器触点→预充电阻→电池模组→维修开关(内有熔断器)→电池模组→电流传感器→主负继电器触点→高压-→车载充电机→交流充电桩。


图20 慢充预充电回路


(2)快充预充电,是由直流充电桩提供电源。


5.充电


(1)慢充回路,如图21所示:交流充电桩→车载充电机→高压+→主正继电器触点→电池模组→维修开关(内有熔断器)→电池模组→电流传感器→主负继电器触点→高压-→车载充电机-交流充电桩。


图21 慢充回路


(2)快充回路,如图22所示:直流充电桩→高压+→主正继电器触点→电池模组→维修开关(内有熔断器)→电池模组→电流传感器→主负继电器触点→高压-→直流充电桩。


图22 快充回路


6.上电


(1)预上电回路。打开点火开关,VCU收到15号信号唤醒BMS;BMS自检、初始化,将结果上报VCU;VCU发出电流给主负继电器,主负继电器触点闭合。因电机控制器、电动压缩机控制器内有电容器,BMS首先对电容预放电,然后闭合预充继电器。如图23所示:动力电池+→预充电阻→预充继电器触点→高压+→负载→高压-→主负继电器触点→电流传感器→动力电池-。


图23 预上电回路


(2)上电回路。当电容电压等于动力电池电压,BMS闭合主正继电器,断开预充继电器,如图24所示:动力电池+。主正继电器触点→高压+→负载斗高压-→主负继电器触点→电流传感器(分流器)→动力电池-。


图24 上电回路


7.绝缘监测


    绝缘监测回路,如图25所示。


图25 绝缘监测回路


(1)电池正监测回路,动力电池+→绝缘监测电阻→主正绝缘监测继电器→搭铁。


(2)电池负监测回路,动力电池一→绝缘监测电阻→主负绝缘监测继电器→搭铁。BMS分别指令S1、S2闭合,分别测得电压U1、U2,以及测得高压总电压U,将这三者代入公式计算,计算出高压+与搭铁的绝缘电阻Rx、高压一与搭铁的绝缘电阻Ry,然后判断绝缘性能是否正常。


来源:学而为科技


-END-

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 143浏览
  • 晶台光耦KL817和KL3053在小家电产品(如微波炉等)辅助电源中的广泛应用。具备小功率、高性能、高度集成以及低待机功耗的特点,同时支持宽输入电压范围。▲光耦在实物应用中的产品图其一次侧集成了交流电压过零检测与信号输出功能,该功能产生的过零信号可用于精确控制继电器、可控硅等器件的过零开关动作,从而有效减小开关应力,显著提升器件的使用寿命。通过高度的集成化和先进的控制技术,该电源大幅减少了所需的外围器件数量,不仅降低了系统成本和体积,还进一步增强了整体的可靠性。▲电路示意图该电路的过零检测信号由
    晶台光耦 2025-01-16 10:12 91浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 138浏览
  • 故障现象 一辆2007款法拉利599 GTB车,搭载6.0 L V12自然吸气发动机(图1),累计行驶里程约为6万km。该车因发动机故障灯异常点亮进厂检修。 图1 发动机的布置 故障诊断接车后试车,发动机怠速轻微抖动,发动机故障灯长亮。用故障检测仪检测,发现发动机控制单元(NCM)中存储有故障代码“P0300 多缸失火”“P0309 气缸9失火”“P0307 气缸7失火”,初步判断发动机存在失火故障。考虑到该车使用年数较长,决定先使用虹科Pico汽车示波器进行相对压缩测试,以
    虹科Pico汽车示波器 2025-01-15 17:30 92浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 110浏览
  • 近期,智能家居领域Matter标准的制定者,全球最具影响力的科技联盟之一,连接标准联盟(Connectivity Standards Alliance,简称CSA)“利好”频出,不仅为智能家居领域的设备制造商们提供了更为快速便捷的Matter认证流程,而且苹果、三星与谷歌等智能家居平台厂商都表示会接纳CSA的Matter认证体系,并计划将其整合至各自的“Works with”项目中。那么,在本轮“利好”背景下,智能家居的设备制造商们该如何捉住机会,“掘金”万亿市场呢?重认证快通道计划,为家居设备
    华普微HOPERF 2025-01-16 10:22 163浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,与汽车技术领先者法雷奥合作,采用创新的开放系统协议(OSP)技术,旨在改变汽车内饰照明方式,革新汽车行业座舱照明理念。结合艾迈斯欧司朗开创性的OSIRE® E3731i智能LED和法雷奥的动态环境照明系统,两家公司将为车辆内饰设计和功能设立一套全新标准。汽车内饰照明的作用日益凸显,座舱设计的主流趋势应满足终端用户的需求:即易于使用、个性化,并能提供符合用户生活方式的清晰信息。因此,动态环境照明带来了众多新机遇。智能LED的应用已
    艾迈斯欧司朗 2025-01-15 19:00 76浏览
  • 数字隔离芯片是现代电气工程师在进行电路设计时所必须考虑的一种电子元件,主要用于保护低压控制电路中敏感电子设备的稳定运行与操作人员的人身安全。其不仅能隔离两个或多个高低压回路之间的电气联系,还能防止漏电流、共模噪声与浪涌等干扰信号的传播,有效增强电路间信号传输的抗干扰能力,同时提升电子系统的电磁兼容性与通信稳定性。容耦隔离芯片的典型应用原理图值得一提的是,在电子电路中引入隔离措施会带来传输延迟、功耗增加、成本增加与尺寸增加等问题,而数字隔离芯片的目标就是尽可能消除这些不利影响,同时满足安全法规的要
    华普微HOPERF 2025-01-15 09:48 169浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 202浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 114浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 149浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 95浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 163浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦