★
欢迎星标 果壳硬科技
★
2024年5月1日,清华大学孙洪波教授、李正操教授、林琳涵副教授团队在“Nature Communications”上发表了题为“Optofluidic crystallithography for directed growth of single-crystalline halide perovskites”的论文。
激光控制结晶的优势及挑战
近年来,卤化铅钙钛矿材料作为一种新型的半导体材料,由于其出色的光电性质,在太阳能电池、发光二极管器件、光电探测等领域具有广泛的应用前景,受到了人们的广泛关注。由于通过控制钙钛矿材料的结晶过程,能够减少缺陷浓度,增大晶粒尺寸,避免非辐射复合,因此,对钙钛矿材料而言,调控其结晶过程已成为获得高性能钙钛矿器件的常用方法。
钙钛矿的结晶过程一般采用溶剂工程、添加剂工程和界面工程等方法调控,以优化钙钛矿结构的形貌并提升晶体质量。然而,这些方法是基于给定条件下的自发过程,局限于整体上的结晶动力学控制,缺少时空控制能力,无法消除结晶过程中的随机性,限制了钙钛矿功能层质量的提升。我们注意到,利用激光自身的时空特性,将激光引入钙钛矿的调控过程中,能够在微纳尺度上实现对钙钛矿结晶过程的实时高精度调控。因此,我们将目标对准激光诱导钙钛矿结晶,特别是发挥激光技术的优势,快速高效地得到高精度、高质量的钙钛矿晶体结构。
激光诱导钙钛矿结晶过程的难题
为了利用激光调控钙钛矿的结晶过程,通常采用的策略分为两种:一是利用光力作用,在激光光束范围内“捕获”钙钛矿前驱体粒子,形成局域的过饱和度并使钙钛矿结晶;二是利用光热作用,形成局域热场,改变局域前驱体溶液的溶解度,使钙钛矿结晶。然而,这些策略面临激光加工功率较高、加工效率较低等问题,对钙钛矿生长过程的调控能力存在不足。此外,现有技术在激光加工结束后,钙钛矿结构存在溶解或自发生长等问题,破坏激光诱导生长过程中的形貌。因此,研究团队若想实现研究目标,首先需要在调控策略上取得突破,并进一步解决形貌控制的问题。
破局:光微流晶体平板印刷法与配体调控
研究者设计提出了结晶光刻(Optofluidic crystallithography, OCL)的激光增材制造技术。该策略综合利用了光热效应、蒸发和马伦格尼对流等机制,形成局域的过饱和度,进而调控钙钛矿的结晶动力学,实现晶体生长和图案化制造的一体化。研究者利用COMSOL模拟了激光照射下钙钛矿晶体周围的局域过饱和度,并通过实验验证了过饱和度产生的原理。其中马伦格尼对流的引入加速了传质过程,使得钙钛矿结构能够在激光诱导下快速生长,在实验中,MAPbBr3钙钛矿单晶的生长速度可达0.1 mm/s,显著快于传统的钙钛矿单晶制备方法。激光阈值功率约为150 μW,低于现有的激光调控钙钛矿结晶过程方法。
图1 | OCL工作原理以及利用OCL直接打印单晶MAPbBr3结构的光学图像。标尺:50 μm。
此外,研究者通过分析钙钛矿自发生长的原理,认为表面能的差异是造成自发生长破坏形状的关键。因此,研究者提出利用配体调节钙钛矿结构的表面能,以抑制自发生长的策略,这使得高精度钙钛矿微图案结构的制备成为可能。在激光-配体协同调控策略下,已经生成的钙钛矿结构表面会与配体结合,抑制自发生长;激光照射部分,由于激光诱导的配体解吸附过程,能够暴露钙钛矿晶体表面,使得生长过程稳定进行。
图2 | 激光-配体协同控制的结晶动力学原理与实验图
结构表征与技术普适性
利用激光加工平台,研究者制备了多种图案化的钙钛矿微结构,充分展示了该技术的加工能力。这些钙钛矿结构具有光滑平整的表面,避免了激光加工过程中常见的表面损伤,而且维持了较低的缺陷密度,这对于提升材料的光电性能至关重要。此外,研究者通过相同的设计策略,将这一技术应用到MAPbCl3、FAPbBr3、MAPbI3等钙钛矿结构中,进一步证明了技术的普适性。该技术有望进一步应用到器件的制备过程中。
图3 | MAPbBr3单晶的制备与共聚焦表征
图4 | OCL技术的普适性
研究团队 | 作者
酥鱼 | 编辑
如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——