CAN/CANFD接口的ESD防护

谈思实验室 2024-05-19 18:01

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯

引言:ESD可能发生在任何有外露连接器的系统上,包括CAN总线接口,通常这些连接器在汽车装配和维护时外露。例如在装配一辆汽车时,需要将电缆布线与汽车中的控制模块相连,这样当它们穿过工厂时,这些模块上可能累积过量的电荷,在将这些电缆与装有CAN收发器的控制模块相连时,过量的电荷会从电缆流入模块,然后进入CAN收发器。根据工厂的环境条件和处理电缆布线的方式,这些放电可能高达30kV,并永久地损坏CAN收发器,导致车辆无法操作,只要在系统中处理电缆布线,就有发生ESD的风险。

01

CAN/CAN FD基础

CAN

控制器局域网 (CAN) 是许多汽车应用中广泛使用的通信协议,它是一个双线差分通信接口,通常使用双线、双绞线电缆来传输和接收串行数据,其物理层根据ISO 11898-2标准定义。物理层包含CAN收发器和双绞线,CAN收发器在网络中的协议控制器和物理总线线路之间提供物理链路,双绞线将所有的CAN节点连接在一起。连接CAN收发器和电缆的两条线路被称为CANH和CANL,CANL是低CAN总线线路,在普通运行模式下,显性态的值约为1.4V,隐性态的值为5V。在低功率模式下,CANL的电压等于电池电压。CANH是高CAN总线线路,在典型运行模式下,显性态的值约为3.6V,隐性态的值以及低功率模式下的值为0V。另外,还建议用一个终端电阻来端接CANH和CANL线路,以避免信号反射和高频噪声。

高速CAN(ISO 11898的第2、5和6部分)指定传输速率最高为1Mbit/s,低速容错CAN(ISO 11898的第3部分)指定速率最高为500Kbit/s。容错通常意味着,在错误情况下,收发器可从差分接收和发送能力切换为单线发射器和/或接收器,这意味着最大单端(容错)总线电压为+12V,差分总线电压为−12V。

CAN FD

由于需要传输和接收更多数据,汽车网络中使用的ECU也越来越多,因此限制为1 Mbit/s的传统CAN网络不足以适应未来需求。CAN FD是CAN物理层的更新,主要区别在于灵活的数据速率,最高可达10Mbit/s,2Mbit/s是典型的数据传输速率限制,适用于不需要更高数据速率的许多应用。

图4-1:CAN系统架构,带有单个设备来保护CAN节点

如同任何其他外露连接器接口,CAN/CAN FD接口会发生如静电放电等高压瞬变事件,在CAN总线连接器上安装ESD保护二极管,外部钳位电路可应用于CANH和CANL线路,保护两条CAN总线线路免受ESD及其他瞬变现象造成的损坏,以扩展网络的ESD耐受性。不仅能够保护CAN收发器正常通信,还能够保护所有下游和相邻系统免受ESD耦合能量的影响。

CAN协议可支持不同的速度,具体包括:

  1. 低速 (LS CAN):高达125kbps

  2. 高速 (HS CAN):高达1Mbps

  3. 灵活数据速率 (CAN FD):高达10Mbps

  4. 具有信号改善功能的 CAN (CAN SIC):高达8Mbps

  5. CAN XL:高达10-20Mbps(尚未发布)

02

ESD保护要求

许多CAN收发器具有内置的ESD保护单元,但是为了减小芯片尺寸,它们大多数只能保护到8kV。根据不同环境,某些ESD冲击可能高达30kV,因此需要使用外部ESD保护二极管来提高系统级的ESD性能,以下是在选择正确的ESD保护二极管时需要考虑的主要事项和参数:

1#:工作电压 (Vrwm) 和极性

二极管的Vrwm 取决于使用它们的场景,在理想条件下,CAN总线电压电平在CANH的Vcc(5V或3.3V)和CANL的0V之间摆动,但是在车辆中有一种取决于电池电压的共模电压。小型车辆使用12V电池,大型车辆使用24V电池。除了共模电压外,如果汽车电池几乎没有电量,还会出现不正常的借电启动风险。要正确地借电启动车辆,需将另一辆车的电池与无电电池并连。不了解这点的人可能会将两个电池串连,将汽车的整体电压加倍。在12V电池的情况下,需要使用24V ESD二极管,以确保在这种串联借电启动的情况下,它不会烧掉。在使用由两块12V单元组成的24V电池时,需要使用一个36V二极管,因为这两个电池单元将分别充电,考虑到线路故障和误接线,所有二极管都需要是双向二极管。

此外,由于CAN网络可能短路接至电压源,例如汽车电池,因此CANL和CANH线路上的ESD保护器件必须能够耐受更高电压电平。在快速启动条件下,或者如果有两个12V电池串联,这意味着至少需要2×12V=24V的截止电压VRWM。

2#:IEC 61000-4-2等级

IEC 61000-4-2标准定义了模拟实际ESD冲击的波形,与模拟受控环境中ESD事件的人体放电模型(HBM) 和充电器件模型 (CDM) 等波形不同,某些环境因素(比如湿度和温度)会使ESD冲击更加剧烈,建议至少使用最小接触等级为15kV的ESD二极管。

3#:ISO 10605等级

ISO 10605标准定义了一种模拟汽车环境中实际ESD冲击的波形,此波形定义了许多不同的电容和电阻组合,与只需要150pF/330Ω的IEC 61000-4-2不同,这些组合的最大强度为330pF/330Ω,这比IEC61000-4-2波形更加剧烈。要在严酷的汽车环境中经受住ESD冲击,建议ESD二极管的最小接触等级为15kV。

4#:电容

ESD二极管应具有低电容,以尽可能减少信号衰减,二极管最大允许结电容可能因信号速度(LS CAN与CAN FD)、收发器电容、网络规模和CANH、CANL线路上的其他器件(如滤波电容器)而异,通常建议将二极管电容保持在15pF以下,以尽可能提高系统的总电容预算。

5#:钳位电压VCL

钳位电压要求可能因使用的CAN收发器而异,钳位电压VCL应当低于CANH和CANL引脚的绝对最大等级耐压值。

6#:封装

对于CAN应用,许多系统需要对其电路板进行自动光学检查,以确认所有器件都已正确焊接,考虑到这一点,建议对ESD二极管使用引线式封装,如SOT-23和SC70。

03

ESD保护实例

将ESD2CAN24-Q1与TCAN1042V-Q1 CAN收发器配对使用,演示了其如何在12V汽车环境中提供系统级ESD抗扰能力。本实验中使用了两个电路板:一个电路板只有 TCAN1042V-Q1,另一个电路板同时装有ESD2CAN24-Q1和TCAN1042V-Q1。

为测量信号完整性,两个电路板都采用5V电源,并在TXD引脚上施加500kHz (1Mbps) 的数字信号,来模拟HS CAN环境。将一个示波器连接到CANH(线路 1)、CANL(线路 2)、TXD(线路 3)和RXD(线路4),以观察结果。如图4-2和图 4-3中的结果所示,ESD2CAN24-Q1二极管根本不会劣化CANH和CANL信号。

图4-2:无二极管

图4-3:有ESD二极管

为测量系统级ESD抗扰能力,两个电路板的CANH和CANL引脚都受到了±30kV ISO 10605接触脉冲的冲击。因为TCAN1042V-Q1额定只能承受8kV ISO 10605脉冲,所以没有二极管的系统出现了故障,采用ESD2CAN24-Q1的系统则经受住了冲击,因为ESD2CAN24-Q1将脉冲限制在收发器可以承受的足够低的电压水平内。

04

总结

为了确保稳健的系统级保护,满足汽车在各类环境中正常运行,CAN总线这种接口需要有非常强大的ESD保护解决方案,要确保系统不仅不会出现高压瞬变,而且要尽可能减少电容,以实现不受约束的信号传输,CAN和CAN FD推荐表4-1和表4-2参数。

表4-1:LIN总线ESD/TVS diode选型参数参考

表4-2:LIN总线ESD/TVS diode选型参数参考

来源:网络

 专业社群 

 精品活动推荐 

更多文章

不要错过哦,这可能是汽车网络安全产业最大的专属社区!

关于涉嫌仿冒AutoSec会议品牌的律师声明

一文带你了解智能汽车车载网络通信安全架构

网络安全:TARA方法、工具与案例

汽车数据安全合规重点分析

浅析汽车芯片信息安全之安全启动

域集中式架构的汽车车载通信安全方案探究

系统安全架构之车辆网络安全架构

车联网中的隐私保护问题

智能网联汽车网络安全技术研究

AUTOSAR 信息安全框架和关键技术分析

AUTOSAR 信息安全机制有哪些?

信息安全的底层机制

汽车网络安全

Autosar硬件安全模块HSM的使用

首发!小米雷军两会上就汽车数据安全问题建言:关于构建完善汽车数据安全管理体系的建议

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论 (0)
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 162浏览
  • 在智能语音设备开发中,高音量输出是许多场景的核心需求,例如安防警报、工业设备提示、户外广播等。 WT588F02BP-14S 和 WTN6040FP-14S 两款语音芯片,凭借其内置的 D类功放 和 3W大功率输出 能力,成为高音量场景的理想选择。本文将从 性能参数、应用场景、设计要点 三大维度,全面解析这两款芯片的选型策略。一、核心参数对比与选型决策参数WT588F02BP-14SWTN6040FP-14S输出功率3W@4Ω(THD<1%)3W@4Ω(THD<0.8%)功
    广州唯创电子 2025-03-28 09:15 87浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 172浏览
  • 在工业控制与数据采集领域,高精度的AD采集和实时显示至关重要。今天,我们就来基于瑞芯微RK3568J + FPGA国产平台深入探讨以下,它是如何实现该功能的。适用开发环境如下:Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:Ubuntu18.04.4 64bit、VMware15.5.5U-Boot:U-Boot-2017.09Kernel:Linux-4.19.232、Linux-RT-4.19.232LinuxSDK:LinuxSD
    Tronlong 2025-03-28 10:14 131浏览
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 113浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 68浏览
  • 本文介绍瑞芯微RK356X系列复用接口配置的方法,基于触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。复用接口介绍由下图可知,红圈内容当前引脚可配置为SPI0或者PWM0功能。由标准系统固件以及相关系统手册可得,当前接口默认配置为SPI0功能:console:/ # ls dev/spidev0.0dev/spidev0.0再由原理图可知当前GPIO为GPIO0_C3
    Industio_触觉智能 2025-03-28 18:14 101浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 56浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 198浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 44浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 145浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 84浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 105浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦