OpenCV4.8ForJava实时人脸检测

原创 OpenCV学堂 2024-05-17 17:46

点击上方蓝字关注我们

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

前言

我写这篇文章之前,我搜索整个网络文章跟问各种语言大模型,太可怕了,它们没有一个正确的,但是都在给我一本正经的胡说八道。所以没办法,我只好自己研究一番,经过两天的折腾终于搞定了OpenCV DNN部署YOLOv5、YOLOv8等各种模型。然后我特别想把这块最关键的知识点给大家分享一下,所以写了这篇文章,以Java语言完成OpenCV DNN的实时人脸检测,同时解释其中的关键知识点。

OpenCV DNN人脸检测

各种博客上的很多Java人脸检测的文章都还是基于级联检测器的,有的好像是我2017年前文章的代码。后来我再也没写过Java,所以网上居然再也找不到Java版本的OpenCV DNN人脸检测的文章跟代码,各种博客上的代码一看就早已落伍多时。这里使用最新版本的Java SDK和OpenCV4.8深度神经网络模块进行深度学习和人脸检测的方法。关于JDK环境搭建与IDE安装可以看这篇文章:

OpenCV4.8 Java SDK实现YOLOv5模型部署


OpenCV DNN官方提供的人脸检测模型下载地址如下:
https://gitee.com/opencv_ai/opencv_tutorial_data/tree/master/models
输入的数据格式如下:

这是一个SSD的对象检测模型输出的格式为: 
1x1xNx7[batchId, classId, confidence, left, top, right, bottom]

代码实现与演示

我给OpenCV DNN 人脸检测的Java实现封装成了一个类,客户端只要两行代码即可调用执行,简单方便,写个Java的Main方法即可调用,实现人脸检测,唯一需要的就是先加载OpenCV Java的DLL支持,然后就可以正常调用了。客户端代码如下:
public static void main(String[] args) {
    String model_file = "D:/projects/opencv_face_detector_uint8.pb";
    String pb_txt_file = "D:/projects/opencv_face_detector.pbtxt";
    System.load("D:/opencv-4.8.0/opencv/build/java/x64/opencv_java480.dll");
    System.out.println("start to read image...");
    Mat inputImage = Imgcodecs.imread("D:/images/mmc.png");
    JavaFaceDetection face_detector = new JavaFaceDetection(model_file, pb_txt_file, 0.5f);
    face_detector.infer_image(inputImage);
    HighGui.imshow("OpenCV Java 深度学习人脸检测演示", inputImage);
    HighGui.waitKey(0);
    VideoCapture capture = new VideoCapture();
    capture.open(0);
    while(true) {
        Mat frame = new Mat();
        boolean ret = capture.read(frame);
        Core.flip(frame, frame, 1);
        if(ret) {
            face_detector.infer_image(frame);
            HighGui.imshow("OpenCV Java 深度学习人脸检测演示", frame);
            int c = HighGui.waitKey(1);
            if (c == 27) {
                break;
            }
        }
    }
    HighGui.destroyAllWindows();
    System.exit(0);
}

封装的Java版本深度学习人脸检测类的代码如下:
import com.sun.jna.Pointer;
import org.opencv.core.*;
import org.opencv.imgproc.Imgproc;
import org.opencv.dnn.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.videoio.VideoCapture;

public class JavaFaceDetection {

    public Net getNet() {
        return net;
    }

    public void setNet(Net net) {
        this.net = net;
    }

    private Net net;
    private float score_t = 0.5f;

    public JavaFaceDetection(String model_path, String pb_txt_file, float conf) {
        this.score_t = conf;
        this.net = Dnn.readNetFromTensorflow(model_path, pb_txt_file);
    }

    public void infer_image(Mat frame) {
        long stime = System.currentTimeMillis();

        // 推理
        Mat blob = Dnn.blobFromImage(frame, 1.0new Size(300300), new Scalar(104.0177.0123.0), falsefalse);
        this.net.setInput(blob);
        Mat probs = this.net.forward();

        // 1x1xNx7
        int rows = probs.size(2);
        int cols = probs.size(3);
        float[] result = new Pointer(probs.dataAddr()).getFloatArray(0, rows*cols);

        probs.get(00, result);
        Mat detectOut = new Mat(rows, cols, CvType.CV_32F);
        detectOut.put(00, result);

        for (int row = 0; row < detectOut.rows(); row++) {
            float conf = (float)detectOut.get(row, 2)[0];
            if (conf > this.score_t) {
                float x1 = (float)(detectOut.get(row, 3)[0] * frame.cols());
                float y1 = (float)(detectOut.get(row, 4)[0] * frame.rows());
                float x2 = (float)(detectOut.get(row, 5)[0] * frame.cols());
                float y2 = (float)(detectOut.get(row, 6)[0] * frame.rows());
                Rect2d box = new Rect2d();
                box.x = x1;
                box.y = y1;
                box.width = x2 - x1;
                box.height = y2 - y1;
                Rect rect = new Rect((int) box.x, (int) box.y, (int) box.width, (int) box.height);
                Imgproc.rectangle(frame, rect, new Scalar(0,0255), 28);
                Imgproc.putText(frame, String.format("%.2f", conf), new Point(rect.x, rect.y-5), Imgproc.FONT_HERSHEY_COMPLEX, 0.5new Scalar(2550255), 18);
            }
        }
        long end_time = System.currentTimeMillis();
        float fps = 1000.0f /  (end_time - stime);
        Imgproc.putText(frame, String.format("FPS: %.2f", fps), new Point(3030), Imgproc.FONT_HERSHEY_COMPLEX, 1.0new Scalar(00255), 28);
    }
}

其中最关键的是如何把推理输出得到四维Tensor张量 1x1xNx7 转换为 一个2D的Mat对象,这个就是各种大语言模型胡编乱造的地方,其实只有用JNA通过JNI接口访问本地C++地址获取推理以后的浮点数数组,然后重新构建一个2D Mat对象即可。解决这个问题其它代码基本是C++版本的Java语言翻译,容易了。


检测单张图像


视频实时检测-本人亲测有效



系统化学习直接扫码查看

推荐阅读

OpenCV4.8+YOLOv8对象检测C++推理演示

ZXING+OpenCV打造开源条码检测应用

总结 | OpenCV4 Mat操作全接触

三行代码实现 TensorRT8.6 C++ 深度学习模型部署

实战 | YOLOv8+OpenCV 实现DM码定位检测与解析

对象检测边界框损失 – 从IOU到ProbIOU

YOLOv8 OBB实现自定义旋转对象检测

初学者必看 | 学习深度学习的五个误区

YOLOv8自定义数据集训练实现安全帽检测


OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 91浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 220浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 98浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 158浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 141浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 67浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 182浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 176浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 143浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 117浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦