基于FPGA的DDR3多端口读写存储管理设计

FPGA技术江湖 2024-05-17 07:27

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。


今天给大侠带来《基于FPGA的DDR3多端口读写存储管理设计,话不多说,上货。

摘要


为了解决视频图形显示系统中多个端口访问DDR3时出现的数据存储冲突问题,设计了一种基于FPGA的DDR3存储管理系统。DDR3存储器控制模块使用MIG生成DDR3控制器,只需通过用户接口信号就能完成DDR3读写操作。DDR3用户接口仲裁控制模块将中断请求分成多个子请求,实现视频中断和图形中断的并行处理。帧地址控制模块确保当前输出帧输出的是最新写满的帧。验证结果表明,设计的DDR3存储管理系统降低了多端口读写DDR3的复杂度,提高了并行处理的速度。


引言


本文以Xilinx公司的Kintex7系列XC7K410T FPGA芯片和两片Micron公司的MT41J128M16 DDR3 SDRAM芯片为硬件平台,设计并实现了基于FPGA的视频图形显示系统的DDR3多端口存储管理。



总体架构设计


机载视频图形显示系统中,为了实现多端口对DDR3的读写访问,设计的DDR3存储管理系统设计框图如图1所示,主要包括DDR3存储器控制模块、DDR3用户接口仲裁控制模块和帧地址控制模块。


DDR3存储器控制模块采用Xilinx公司的MIG[4](Memory Interface Generator)方案,通过用户接口建立FPGA内部控制逻辑到DDR3的连接,用户不需要管理DDR3初始化、寄存器配置等复杂的控制逻辑,只需要控制用户接口的读写操作。
DDR3用户接口仲裁控制模块将每一个数据读写请求设置成中断,借鉴中断处理思想来进行仲裁控制,从而解决数据存储的冲突问题。帧地址控制模块控制帧地址的切换。为了提高并行处理的速度,减少数据读写冲突,将图形数据和视频数据分别存储在不同的DDR3中。

DDR3存储器控制模块设计


MIG生成的DDR3控制器的逻辑框图如图2所示,只需要通过用户接口信号就能完成DDR3读写操作,大大简化了DDR3的设计。


1、DDR3控制模块用户接口写操作设计
DDR3存储器控制模块用户接口写操作有两套系统:一套是地址系统,另一套是数据系统。用户接口写操作信号说明如表1所列。
表1 DDR3控制器用户接口写操作信号说明


地址系统的内容是app_addr和app_cmd,两者对齐绑定,app_cmd为000时为写命令。当app_rdy(DDR3控制)和app_en(用户控制)同时拉高时,将app_addr和app_cmd写到相应FIFO中。数据系统的内容是app_wdf_data,它在app_wdf_rdy(DDR3控制)和app_wdf_wren(用户控制)同时拉高时,将写数据存到写FIFO中。
为了简化设计,本文设计的用户接口写操作时序如图3所示,使两套系统在时序上完全对齐。



2、DDR3控制模块用户接口读操作设计
用户接口读操作也分为地址系统和数据系统。用户接口读操作信号说明如表2所列。
表2 DDR3控制器用户接口读操作信号说明


地址系统与写操作相同,在时钟上升沿且app_rdy为高电平时,用户端口同时发出读命令(app_cmd=001)和读地址,并将app_en拉高,将读命令和地址写到FIFO中。对于数据系统,当app_rd_data_valid有效,则读数据有效,读回的数据顺序与地址/控制总线请求命令的顺序相同。
读操作地址系统和数据系统一般是不对齐的,因为地址系统发送到DDR3后,DDR3需要一定的反应时间,读操作时序如图4所示。


DDR3用户接口仲裁控制模块设计


每片DDR3只有一组控制、地址和数据总线,因此同一时刻只能有一个设备在访问。常见的总线切换方式有两种:一种是轮询机制,软件实现简单,但实时性不高;另一种是仲裁机制,设备发送中断请求,从而进行总线切换。由于视频图形显示系统对实时性要求高,因此选择仲裁机制。
DDR3用户接口仲裁控制框图如图5所示。为了提高并行速度,将图形和视频分别进行中断处理。将设备中断请求解析成多个子请求,进行优先级判断,每个子请求对应一个中断处理逻辑。


1、视频处理写请求中断处理器设计
由于视频处理写请求不涉及到图形中断处理,所以对应一个子请求,即视频处理写子请求。
视频处理模块将采集到的视频经过缩放、旋转等操作后存储在缓存区中,当缓存区满时发送视频处理模块写请求。视频处理写中断处理主要是从视频处理模块的缓存区中将地址和数据取出,写入到视频存储DDR3中。
视频处理写请求中断处理流程图如图6所示。当视频处理模块写请求信号有效时,生成子中断请求信号,若总线空闲则响应该中断。当命令接收就绪(app_rdy=1)且数据接收就绪(app_wdf_rdy=1)时,从视频处理缓存区中读取地址和数据,同时发送写命令、写地址和写数据。若缓存区为空,说明全部写完,视频处理写中断结束。



2、叠加输出读请求中断处理器设计

叠加输出模块需要从DDR3中将待输出的图形数据和视频数据存储到行缓存中,因此分为两个子请求:视频输出读请求和图形输出读请求。由于两者分别在图形中断处理和视频中断处理中完成,因此可以同时进行。

视频输出读中断处理主要从视频存储DDR3中读取1行视频数据,写入到叠加输出模块的视频缓存区中,视频输出读中断处理流程图如图7所示。本系统中突发长度BL=8,即每个用户时钟周期对应接收同一行地址中相邻的8个存储单元的连续数据。输出视频分辨率为cols×rows,则地址系统需要发送cols/8个突发读命令。数据系统接收读数据时,若读数据有效(app_rd_data_valid=1),则将读到的数据存储到叠加输出模块的视频缓存区中,同时读数据个数加1。当读数据个数为cols/8时,所有读命令对应的读数据全部接收,视频输出读中断处理结束。


图形输出读中断处理包含两个步骤:从图形存储DDR3中读取1行图形数据,写到叠加输出模块的图形缓存区中;将刚刚搬移数据到图形缓存区的DDR3存储空间清零。前者与视频输出读中断的处理过程类似。   

图形数据写入DDR3时只写入有图形的位置,而不是全屏扫描,如果不进行清屏操作会导致下一帧图形画面上残留上一帧的图形数据。清屏操作指图形输出后将DDR3中对应地址的存储空间全部写入数值0,从而将当前图形数据清除。



3、图形生成写请求中断处理器设计

为了提高读写速度,图形中断处理器中先进行直接结果写中断处理,同时视频中断处理器中进行插值背景视频读中断处理,完成后再进行插值结果写中断处理。


帧地址控制模块设计


帧地址控制模块主要是将DDR3空间进行划分,同时控制帧地址的切换。为了简化设计,将存储器划分为若干块,每块存储一帧数据,在用户仲裁控制模块读写缓存区时只生成帧内地址,帧地址的切换由帧读写控制模块实现,帧内地址结合帧地址组合成对应DDR3的内部地址值。DDR3的帧地址划分如图8所示。

设置三个帧存储空间,其中一帧用于读出,一帧用于写入,还有一帧空闲,分别称作输入帧、输出帧和空闲帧。用三者的切换来实现帧速率的转换,确保输出帧相对于当前输入帧的延迟最小,即当前输出帧输出的是最新写满的帧。当写入的帧存储空间已经写满,而读存储空间还没读完,将下一帧的图像数据写入当前空闲的帧存储空间。

图9为PAL输入帧和输出帧读写控制流程图。以A空间为输出帧,B空间为输入帧,C空间为空闲帧为例。若A空间读完,B空间写满,则将B空间变成输出帧并输出,将C空间变成输入帧并继续输入;若A空间还没有读完,B空间已经写满,则将下一帧数据写入到C空间,并继续从A空间输出。


验证结果与分析


图形生成写中断处理仿真图如图 10所示。由于图形生成数据不是从左往右连续进行的,因此每次突发写操作发送的128位数据(BL=8),有效的数据只有低16位,高112位直接用掩码屏蔽(app_wdf_mask=16’hfffc)。当一帧图形全部绘制完成后发送图形生成模块写请求(graphics_done=1)。此时图形中断处理器执行直接结果写中断 (graphics_wr_interrupt=1),视频中断处理器执行插值背景读中断(graphics_wr_interrupt_rd_bk=1)。
当两者同时完成(rd_bk_video_finish=1)时,图形中断处理器执行插值结果写请求中断。其中,c0_app_XXX表示图形存储DDR3的用户接口,写图形数据时,用户接口地址系统和数据系统是对齐的;c1_app_XXX表示视频存储DDR3的用户接口,读视频背景时,数据系统比地址系统稍有延迟。


用本文设计的DDR3存储管理系统对文献中图6.1进行中断处理。视频分辨率为1600×1200;绘制字符等直接结果点共812个像素(矩形填充忽略不算);绘制斜线等插值结果点共有4762个像素。用本文算法测试各中断处理时间如表 3所示。
表3 中断处理时间表

其中,图形生成中断直接结果写8.5us,插值结果写56.6us,图形输出读2.1us,视频中断处理器中,视频处理写中断将一行视频处理数据顺序写入到DDR3中耗时1.1us,则将一帧视频处理数据写入DDR3中耗时1.32ms;视频输出读中断从DDR3读出1行视频数据耗时1us,则将一帧视频读出需要1.2ms;插值背景读耗时54.2us。视频处理中断共耗时2.5742ms。图形处理中断中,图形输出读中断读出1行图形数据,并将其内存空间清零,共需要2.1us,即将一帧图形读出需要2.52ms,则图形处理中断共耗时2.5851ms。

本文设计的系统对图形生成读写中断速度有了明显提高。因为文献中断类型较多,且图形生成中断的优先级最低,在实现的过程中会多次被打断,导致图形生成执行时间较长;而本文算法中,插值背景读操作与直接结果写操作同时在视频中断处理和图形中断处理中进行,利用并行操作减少时间,并大大降低了复杂度。

本文算法中,插值背景读操作与直接结果写操作同时在视频中断处理和图形中断处理中进行,利用并行操作减少时间,并大大降低了复杂度。

结语

   
本文设计并实现了基于FPGA的DDR3多端口存储管理,主要包括DDR3存储器控制模块、DDR3用户接口仲裁控制模块和帧地址控制模块。DDR3存储器控制模块采用Xilinx公司的MIG方案,简化DDR3的逻辑控制;DDR3用户接口仲裁控制模块将图形和视频分别进行中断处理,提高了并行速度,同时简化了仲裁控制;帧地址控制模块将DDR3空间进行划分,同时控制帧地址的切换。
经过分析,本文将图形和视频中断分开处理,降低多端口读写DDR3的复杂度,提高并行处理速度。

- THE END -

🍁


往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2024.01.06更新)

FPGA就业班,05.04开班,新增课程内容不加价,高薪就业,线上线下同步!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+学校/公司+专业/岗位进群


FPGA技术江湖QQ交流群

备注姓名+学校/公司+专业/岗位进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 77浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 24浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 130浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 156浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 108浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 93浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 105浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 23浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 30浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 188浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦