【光电智造】MATLAB机器视觉工具箱的应用

今日光电 2024-05-15 18:04

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----

MATLAB机器视觉工具箱是MATLAB软件的一个扩展工具箱,主要用于处理和分析图像和视频。该工具箱包含了许多用于图像处理、特征提取、目标检测、图像配准、三维重建以及机器学习等领域的算法和函数。MATLAB机器视觉工具箱不仅提供了快速、高效的图像处理工具,还提供了丰富的可视化功能,使用户能够更加直观地了解图像和视频数据。本文将介绍MATLAB机器视觉工具箱的使用方法,并给出5个使用案例。

1、使用方法

1.1安装和启用工具箱

在使用MATLAB机器视觉工具箱之前,需要先安装并启用该工具箱。可以通过以下步骤来安装和启用MATLAB机器视觉工具箱:

(1)在MATLAB软件中,点击“Home”选项卡,然后选择“Add-Ons”选项卡。

(2)在“Add-On Explorer”界面中,选择“Get Add-Ons”选项卡,并搜索“Computer Vision Toolbox”。

(3)选择“Computer Vision Toolbox”后,点击“Install”按钮进行安装。

(4)在安装完成后,可以在MATLAB软件的命令窗口中输入“ver”命令来查看是否已经安装成功。

(5)安装成功后,可以通过在MATLAB命令窗口中输入“cv”命令来启用MATLAB机器视觉工具箱。

1.2图像读取和显示

在MATLAB机器视觉工具箱中,可以使用imread函数来读取图像,使用imshow函数来显示图像。以下是一个简单的示例:

% 读取图像I = imread('lena.png');
% 显示图像imshow(I);


MATLAB机器视觉工具箱提供了许多用于图像处理的函数,例如imresize、imrotate、imcrop等。以下是一个简单的示例:

% 缩放图像J = imresize(I, 0.5);
% 旋转图像K = imrotate(I, 45);
% 裁剪图像L = imcrop(I, [100, 100, 200, 200]);
% 显示结果figuresubplot(2,2,1),imshow(I),title('原始图像');subplot(2,2,2),imshow(J),title('缩放图像');subplot(2,2,3),imshow(K),title('旋转图像');subplot(2,2,4),imshow(L),title('裁剪图像');


1.3 特征提取


MATLAB机器视觉工具箱提供了许多用于特征提取的函数,例如detectSURFFeatures、extractHOGFeatures、extractLBPFeatures等。以下是一个简单的示例:

% 提取SURF特征points = detectSURFFeatures(I);features = extractFeatures(I, points);
% 提取HOG特征[hog, visualization] = extractHOGFeatures(I, 'CellSize', [8 8]);
% 提取LBP特征lbpFeatures = extractLBPFeatures(I);
% 显示结果figuresubplot(2,2,1),imshow(I),title('原始图像');subplot(2,2,2),imshow(I); hold on; plot(points.selectStrongest(50));title('SURF特征');subplot(2,2,3),imshow(visualization),title('HOG特征');subplot(2,2,4),bar(lbpFeatures),title('LBP特征');


1.4目标检测


MATLAB机器视觉工具箱提供了许多用于目标检测的函数,例如trainCascadeObjectDetector、vision.CascadeObjectDetector等。以下是一个简单的示例:

% 训练分类器positiveInstances = objectDetectorTrainingData(gTruth);negativeFolder = fullfile(matlabroot, 'toolbox', 'vision', 'visiondata', 'nonObjectImages');negativeImages = imageDatastore(negativeFolder);trainCascadeObjectDetector('detector.xml', positiveInstances, negativeFolder, 'FalseAlarmRate', 0.1, 'NumCascadeStages', 5);
% 加载分类器detector = vision.CascadeObjectDetector('detector.xml');
% 检测目标bbox = step(detector, I);
% 显示结果figureimshow(I); hold on;for i = 1:size(bbox,1) rectangle('Position', bbox(i,:), 'EdgeColor', 'r', 'LineWidth', 2);endtitle('检测结果');


1.5图像配准

MATLAB机器视觉工具箱提供了许多用于图像配准的函数,例如imregtform、imwarp、imregister等。以下是一个简单的示例:

% 读取图像I1 = imread('image1.png');I2 = imread('image2.png');
% 提取SURF特征points1 = detectSURFFeatures(I1);points2 = detectSURFFeatures(I2);features1 = extractFeatures(I1, points1);features2 = extractFeatures(I2, points2);
% 匹配特征indexPairs = matchFeatures(features1, features2);
% 选择最佳匹配matchedPoints1 = points1(indexPairs(:,1), :);matchedPoints2 = points2(indexPairs(:,2), :);[tform, inlierPoints1, inlierPoints2] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine');
% 图像配准outputView = imref2d(size(I1));I2Registered = imwarp(I2, tform, 'OutputView', outputView);
% 显示结果figureimshowpair(I1, I2Registered, 'blend');title('图像配准');


1.6 三维重建

MATLAB机器视觉工具箱提供了许多用于三维重建的函数,例如triangulate、pointCloud、pcshow等。以下是一个简单的示例:

% 读取图像I1 = imread('image1.png');I2 = imread('image2.png');
% 提取SURF特征points1 = detectSURFFeatures(I1);points2 = detectSURFFeatures(I2);features1 = extractFeatures(I1, points1);features2 = extractFeatures(I2, points2);
% 匹配特征indexPairs = matchFeatures(features1, features2);
% 选择最佳匹配matchedPoints1 = points1(indexPairs(:,1), :);matchedPoints2 = points2(indexPairs(:,2), :);[tform, inlierPoints1, inlierPoints2] = estimateGeometricTransform(matchedPoints1, matchedPoints2, 'affine');
% 三维重建worldPoints = triangulate(inlierPoints1, inlierPoints2, tform);ptCloud = pointCloud(worldPoints);pcshow(ptCloud);
% 显示结果title('三维重建');


2、使用案例

2.1目标跟踪


目标跟踪是指在视频序列中检测和跟踪一个特定目标的过程。MATLAB机器视觉工具箱提供了许多用于目标跟踪的函数,例如vision.KalmanFilter、vision.PointTracker等。以下是一个简单的示例:

% 读取视频video = VideoReader('traffic.avi');
% 创建点跟踪器tracker = vision.PointTracker('MaxBidirectionalError', 2);
% 选择第一帧图像中的初始点frame = readFrame(video);points = detectMinEigenFeatures(rgb2gray(frame), 'ROI', [100, 100, 300, 300]);points = points.Location;initialize(tracker, points, frame);
% 跟踪目标while hasFrame(video) frame = readFrame(video); [points, isFound] = step(tracker, frame); visiblePoints = points(isFound, :); oldInliers = oldPoints(isFound, :); if size(visiblePoints, 1) >= 2 [tform, oldInliers, visiblePoints] = estimateGeometricTransform(oldInliers, visiblePoints, 'similarity'); bbox = [min(visiblePoints) max(visiblePoints) -
min(visiblePoints)];frame = insertShape(frame, 'Rectangle', bbox, 'LineWidth', 2);oldPoints = visiblePoints;setPoints(tracker, oldPoints);endimshow(frame);end


2. 2人脸识别

人脸识别是指在图像或视频中识别出人脸并进行分类的过程。MATLAB机器视觉工具箱提供了许多用于人脸识别的函数,例如vision.CascadeObjectDetector、trainImageCategoryClassifier等。以下是一个简单的示例: 

% 读取图像faceDetector = vision.CascadeObjectDetector();I = imread('faces.jpg');
% 检测人脸bbox = step(faceDetector, I);
% 显示结果figureimshow(I); hold on;for i = 1:size(bbox,1) rectangle('Position', bbox(i,:), 'EdgeColor', 'r', 'LineWidth', 2);endtitle('检测结果');
% 训练分类器imds = imageDatastore('FaceDatabase', 'IncludeSubfolders', true, 'LabelSource', 'foldernames');[trainingSet, testSet] = splitEachLabel(imds, 0.8, 'randomize');bag = bagOfFeatures(trainingSet);categoryClassifier = trainImageCategoryClassifier(trainingSet, bag);confMatrix = evaluate(categoryClassifier, testSet);
% 测试分类器I = imread('test.jpg');[labelIdx, scores] = predict(categoryClassifier, I);label = categoryClassifier.Labels(labelIdx);
% 显示结果figureimshow(I); title(char(label));


2.3 文字识别


文字识别是指在图像或视频中识别出文字并进行识别的过程。MATLAB机器视觉工具箱提供了许多用于文字识别的函数,例如ocr等。以下是一个简单的示例:

% 读取图像I = imread('text.png');
% 进行文字识别results = ocr(I);
% 显示结果figureimshow(I); hold on;for i = 1:length(results.Words) text(results.WordBoundingBoxes(i,1), results.WordBoundingBoxes(i,2), results.Words{i}, 'FontSize', 20, 'Color', 'r', 'HorizontalAlignment', 'left', 'VerticalAlignment', 'top');endtitle('文字识别结果');


2.4 图像分割

图像分割是指将图像分成若干个不同的区域或对象的过程。MATLAB机器视觉工具箱提供了许多用于图像分割的函数,例如activecontour、kmeans等。以下是一个简单的示例:

% 读取图像I = imread('coins.png');
% 进行图像分割bw = imbinarize(I);D = -bwdist(~bw);D(~bw) = -Inf;L = watershed(D);rgb = label2rgb(L, 'jet', 'w', 'shuffle');
% 显示结果figureimshow(rgb); title('图像分割结果');


2.5 视频稳定

视频稳定是指在视频序列中去除摄像头抖动或手持摄像时的晃动效果。MATLAB机器视觉工具箱提供了许多用于视频稳定的函数,例如opticalFlowFarneback、vision.GeometricTransformEstimator等。以下是一个简单的示例:

% 读取视频video = VideoReader('shaky.avi');
% 创建光流估计器opticFlow = opticalFlowFarneback('PyrScale', 0.5, 'NumLevels', 4, 'NumIterations', 2, 'PolyN', 7, 'PolySigma', 1.5, 'FastPyramids', true);
% 对每一帧图像进行稳定while hasFrame(video) frame = readFrame(video); flow = estimateFlow(opticFlow, rgb2gray(frame)); [x, y] = meshgrid(1:size(frame,2), 1:size(frame,1)); warpedFrame = interp2(x, y, double(frame), x+flow.Vx, y+flow.Vy); tform = vision.GeometricTransformEstimator('Transform', 'Affine'); [tform, intermediatePoints] = step(tform, reshape([x(:) y(:)], [], 2), reshape([x(:)+flow.Vx(:) y(:)+flow.Vy(:)], [], 2)); stabilizedFrame = imwarp(frame, affine2d(tform.T), 'OutputView', imref2d(size(frame))); imshow(stabilizedFrame);end

           

 以上是MATLAB机器视觉工具箱中的一些常见应用示例,当然还有很多其他的应用场景,如目标跟踪、深度学习等等。具体的应用需要根据实际问题和需求来选择相应的函数和算法。

来源:新机器视觉



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566



评论 (0)
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 123浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 180浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 200浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 274浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 491浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 194浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 324浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 263浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 320浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 230浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 377浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 304浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 275浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦