速进!OBC系统解决方案设计指南完整版来了

原创 安森美 2024-05-14 18:59

点击蓝字 关注我们


“OBC系统解决方案设计指南”又上新了,第一篇文章介绍了系统用途、系统实施方法、系统说明、市场趋势和标准等,本文将继续介绍解决方案概述及拓扑。 



解决方案概述

用于高压应用 (OBC) 的集成 APM16 模块

该 APM16 系列(APM = 汽车功率模块)采用硅超级结 MOSFET 和硅或碳化硅 二极管技术的组合,为 PFC 级、原边 DCDC 级以及副边整流边提供了多种解决方案。APM16 模块能够支持 400VDC 电池系统。

  • 与分立式解决方案相比,使用 APM16 模块技术的优势在于缩小外形尺寸、改进散热设计、降低杂散电感、减少内部键合电阻、提高电流能力、改善 EMC 性能并提高可靠性。

  • 这些器件符合 IEC-60664-1 标准,可实现高达 VAC 5kV/1sec 的功能性强化隔离。APM16 模块符合 AECQ-101 和 AQG-324(汽车模块标准)。APM16 设计可利用 onsemi 栅极驱动器和电流检测放大器来完善 OBC 功率变换解决方案。


用于高压应用 (OBC) 的集成 APM32 模块

该 APM32 系列 (APM = 汽车功率模块)集成了 1200V 碳化硅器件,可用于 800V 电池系统和更大功率的 OBC。Vienna 整流器模块采用 1200 V 80 mΩ 碳化硅 MOSFET 以及碳化硅二极管和硅二极管。双半桥模块,采用了安装在不同基板上的 1200 V 40 mΩ (80 mΩ) 碳化硅 MOSFET。以下为关于采用 1200V 碳化硅模块的应用说明,以及在电气和热性能以及功率密度方面的优势。

  • APM 封装技术为内部设计和制造,因此可以更有效地控制热优化(而非像某些竞品那样外包)。onsemi 还提供灵活的封装和制造选项,允许客户购买裸芯片、分立器件或模块。



碳化硅 MOSFET、硅超级结 MOSFET 与 IGBT 的比较

碳化硅 MOSFET 可用于 PFC、原边 DCDC 和副边整流(双向),是800VDC 电池系统中所推荐的产品。该技术可实现相较于 IGBT 或硅超级结 MOSFET 的最高效率和功率密度。  在众多采用碳化硅 MOSFET 的设计中,可能会有混合解决方案,即 OBC 的某些功率级也可能使用 IGBT 或硅超级结 MOSFET。 

  • 在 400VDC 电池系统中,如果采用传统的升压型或交错升压型拓扑结构,碳化硅 MOSFET 的效率可提高 0.2% - 0.5%;如果用于原边 DCDC 或副边整流(双向),则可提高功率密度和效率。  当碳化硅 MOSFET 用于效率对降低热负荷至关重要的更高功率等级时,可能会带来更大的效益。  

  • 建议对 800VDC 电池系统使用 1200V 碳化硅 MOSFET ,对 400VDC 电池系统使用 650V 碳化硅 MOSFET。  当使用图腾柱 PFC 时,碳化硅 MOSFET 技术是一种适用于任何电池电压的推荐解决方案。



硅超级结 MOSFET可用于 PFC、原边 DCDC 和副边整流(双向)。 在传统的升压、无桥升压和 Vienna 整流器设计中,硅超级结 MOSFET 可很好地实现 PFC,但在图腾柱 PFC 中使用时则效果不佳。硬开关图腾柱 PFC 的劣势体现在体二极管的反向恢复损耗以及无法在连续导通模式下工作。  与 IGBT 相比,硅超级结 MOSFET 具有更高的开关速度和效率。  对于标称电压为 400VDC 的 OBC 电池,650V 硅超级结 MOSFET 非常适合双向设计中的原边整流和副边整流。


IGBT 可用于 PFC 和原边 DCDC。IGBT 没有内置体二极管,需要在内部封装一个二极管或并联一个外部二极管。混合型 IGBT 的封装中包含一个碳化硅二极管。

  • 对于 PFC,IGBT 可用于大多数拓扑结构,且即使“高速”管采用了其他技术,也可用于图腾柱 PFC 的“低速”管。当考虑到原边 DCDC 转换的成本时,IGBT 可用于功率等级较低的设计方案。

  • 与硅超级结 MOSFET 或碳化硅 MOSFET 相较之下,较慢的开关速度和较低的效率将必须在设计的可接受范围之内。IGBT 也可用于低功率等级双向设计中的副边整流,但由于开关损耗较高(与硅超级结或碳化硅 MOSFET 相比),因此并不常用。


硅二极管与碳化硅二极管的比较

硅二极管可用于 400V 电池系统中的 OBC PFC 级和副边整流(单向设计)。碳化硅二极管具有功率密度大、额定电压高、无反向恢复损耗等优点,因此可作为 800V 电池系统的理想选择。碳化硅二极管还可在更低的电压下运行,以提高效率。


栅极驱动器和数字隔离

多种隔离栅极驱动器集成电路解决方案适用于碳化硅 MOSFET (NCV51705 / NCV51561C/D)、IGBT (NCV57xxx) 和硅超级结 MOSFET(NCV51561A/B、NCV511xx)。不断推出的具有电气隔离能力的栅极驱动器还进一步优化了传播延迟和 CMTI 较高的问题。

  • 隔离策略因客户而异,NCIV9xxx 系列数字隔离器可用于进一步满足通信线路上的这些要求。

  • 各式各样的栅极驱动器评估板组合有助于实现快速原型开发。如需了解任何解决方案中我们的栅极驱动器测试:栅极驱动器即插即用生态系统 [SECO-GDBB-GEVB]


隔离式双通道栅极驱动器 NCV51561


带 NCV1362 控制器的碳化硅辅助电源


辅助电源

反激式 DCDC 拓扑形式的隔离电源可通过 NCV1362 控制器提供隔离电源,然后为 SBC 或分立式 LDO 电源 IC 供电。它可提供 20W 至 40W 的输出功率。对于 12V VBUS 的辅助电源,onsemi 可提供 NCV898031 反激式控制器 IC,其需要搭配光耦解决方案使用。


系统基础芯片 (SBC) 根据客户要求进行优化,可满足客户在通信、功率和特定功能等方面的需求。客户还可从热门应用的标准化 SBC 列表中进行选取。像 NCV7471C 或 NCV745x 这类 SBC 结合了系统电源排序、通信总线接口要求以及可提供 5V 电压轨的内置 DC/DC 转换器等功能。 


使用 NCV8170 / NCV816x 或 NCV87xx 等 LDO 可产生额外的电压轨。  为了进一步优化与栅极驱动器有关的噪声问题,NCV3064 控制器可用于为所要求的开关技术生成隔离轨。onsemi 可提供广泛的产品组合,具有低至 4.4uVrms 的极低 RMS 噪声、超过 90dB 的出色 PSRR、极低 Iq 和 150°C 结温额定值。同时做到与市面主流器件封装兼容,并具备电源就绪 (PG) 引脚。


模拟信号链

NCV2191x 或 NCV20xxx 运算放大器可用于电压测量,而 NCV21xR 电流检测放大器可用于高压应用中的低侧电流检测。对于低侧传感应用,共模范围为 -0.3V 至 +26V。若要在负电压侧实现更大的容差范围,则应考虑 NCV7041 系列,其共模输入范围为 -5.0V 至 +80V(增益选项为 14、20、50 和 100)。


NCV225x 比较器与 NVT211 温度传感器和 NCV431 并联电压基准配合使用,可实现对各种系统信息的高精度监测。务必选择具有合适带宽、偏置和所需漂移的放大器。


IVN 和 CAN ESD 保护

onsemi 一直在为车主客户开发 CAN 和 CAN-FD 器件。这些产品已通过所有主要汽车原始设备制造商的认证,可提供面向 LIN、CAN、CAN-FD 和 FlexRay 的完整产品组合。

  • CAN 和 CAN-FD 收发器(如NCV734x)以及即将推出的 隔离式 CAN 均可供选择。

  • 通信接口线路应采用 SZNUP2124 和 SZNUP2125 等器件,以避免瞬态事件的发生。


机械和散热考量

机械封装限制可能会影响电气元件在高度、重量等方面的选择面。无论是使用空气还是液体冷却,都应将对热管理的考量提升到系统层面。


务必要重视材料和元件封装的选择,以有效协助热管理。请参阅 onsemi APM 应用说明 ,了解更多有关提高热性能的信息。




解决方案概述 - 方框图

用于 400V 电池架构的车载充电器


电动汽车充电的系统级示意图

充电站有三种类别或“等级”。1 级和 2 级充电站可将交流电输送到车载充电器,以适当的输出电流和电压为直流电池充电。3 级充电站是“车外”直流充电站,可绕过车辆的 OBC,直接向车辆电池提供高达 400 A 的高压直流电。



推荐产品

<
滑动查看产品推荐
>


安森美(onsemi)还提供了一系列开发工具和资源,包括产品推荐工具、WebDesigner+、Strata Developer Studio、仿真 SPICE 模型、交互式方框图、评估和开发工具、Elite Power Simulator、自助式 PLECS 模型生成器。



解决方案概述 - 拓扑


功率因数校正 (PFC) 拓扑

  • 典型的 OBC 功率因数校正 (PFC) 解决方案因电网输入交流相数和 OBC 设备的输出功率等级 [kW] 而异。OBC 中的 PFC 有多种不同的解决方案,我们将列出其中最常见的示例。

  • 对于单相交流输入 OBC 模块,可采用传统升压、无桥升压或图腾柱(均可选配多通道交错式解决方案)。最可行的交错式解决方案是双通道。3 通道交错也较为可行,但成本效益可能较低。  如果设计是双向的,则 PFC 级将采用图腾柱拓扑结构。

  • 对于 3 相 OBC 模块,可采用 Vienna 整流器和 3 或 4 桥臂桥式 PFC(图腾柱)拓扑结构。3 相全桥 PFC 适用于有 3 相输入但无中性点的模块,而 4 桥臂 PFC 则有 3 相输入(3 组快管)和一个中性点(第 4 组“慢”管)。快管和慢管可在不同的频率下相互切换。如果设计是双向的,则最具成本效益的 PFC 级将是图腾柱拓扑结构。



传统升压 PFC


功率因数校正 (PFC) 拓扑(续)

传统升压 2 通道交错式 PFC


无桥升压 PFC


图腾柱 PFC


图腾柱 2 通道交错式 PFC


3 或 4 桥臂/图腾柱 PFC


Vienna 整流器 PFC(或其他拓扑)


原边 DCDC 拓扑

  • 原边 DCDC 转换通常采用 LLC、CLLC 或移相全桥 (PSFB) 拓扑实现。  另一个可能会出现的拓扑是双有源电桥 (DAB),但它实际上包括原边和副边整流,用于双向设计。  对单向系统来说最常见的解决方案是 LLC,而双向系统则是 CLLC。  某些双向设计可能使用 PSFB 或其他拓扑。碳化硅 MOSFET 和硅超级结 MOSFET 可用于原边整流的所有不同场景,但 IGBT 仅推荐用于 PSFB 拓扑。制定每种解决方案时都需要在成本与效益之间进行权衡,下表总结了其中一些考量因素。

  • 对于 400VDC 系统,设计方案中可采用任何 650V 技术(硅超级结 MOSFET、碳化硅 MOSFET、IGBT)。OBC 的成本和效率目标是影响决策的主要因素。

  • 对于 800VDC 系统,1200V 碳化硅 MOSFET 最为常见,但如果 VBUS 是多电平结构(400VDC + 400VDC),也可使用硅超级结 MOSFET。 

  • 无论采用哪种方法(LLC、CLLC、PSFB、DAB),原边整流几乎都采用某种形式的全桥开关。因此,虽然元件和变压器可能有所不同,但 4 开关是原边 DCDC 转换中最常见的方法。



原边整流拓扑


原边整流 - 全桥 LLC

注意:还有其他控制拓扑结构,但原边上普遍要求全桥。


副边整流拓扑

在变压器的副边,最简单的解决方案是使用二极管桥进行整流。  只要设计是单向的(仅从电网到车辆)就可行。根据所需的系统效率、输出电压和系统成本,这些二极管可以是硅二极管或碳化硅二极管。  碳化硅二极管是 800V 电池或需要实现更高效率的系统的最佳选择(碳化硅二极管具有无反向恢复的特性)。 在单向设计中,使用硅或碳化硅 MOSFET 的全桥解决方案可提高系统效率,但运行成本较高。


对于双向 OBC 设计:双向功能需要采用硅或碳化硅 MOSFET 全桥。IGBT 开关损耗通常会阻碍这种技术在副边(更高功率等级)的应用。  硅 MOSFET 可用于 400V 电池系统,但在低负载时会出现效率下降的问题。  碳化硅 MOSFET 在 400VDC(650V 碳化硅 MOSFET)和 800VDC(1200V 碳化硅 MOSFET)电池系统中均能提供优越的效率,因此 1200V 碳化硅 MOSFET 毫无疑问是 800VDC 电池系统的首选。



副边整流拓扑结构(续)

副边整流二极管桥 - 仅单向(电网至车辆)


副边整流 4 开关全桥 - 双向(电网至车辆和车辆至电网)


了解OBC系统用途、系统实施方法、系统说明、市场趋势和标准,请点击下方文字查看:

收好这本系统设计指南,OBC设计水平再上一个台阶



⭐点个星标,茫茫人海也能一眼看到我⭐


别着急走,记得点赞在看

安森美 安森美(onsemi, 纳斯达克股票代码:ON)专注于汽车和工业终端市场,包括汽车功能电子化和安全、可持续能源网、工业自动化以及5G和云基础设施等。以高度差异化的创新产品组合,创造智能电源和感知技术,解决最复杂的挑战,帮助建设更美好的未来。
评论
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 55浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦