【光电集成】先进封装表面金属化研究

今日光电 2024-05-09 09:00

今日光电

     有人说,20世纪是电的世纪,21世纪是光的世纪;知光解电,再小的个体都可以被赋能。追光逐电,光赢未来...欢迎来到今日光电!




----追光逐电 光赢未来----



杨彦章 钟上彪 陈志华

(光华科学技术研究院(广东)有限公司)

摘要

先进封装是半导体行业未来发展的重要一环,是超越摩尔定律的关键技术。本文通过对不同封装材料进行表面金属化处理,发现粗糙度和镀层应力对镀层结合力均有显著影响。选择合适的粗化方法及低应力电镀铜镀液可以在不显著增加封装材料表面粗糙度的情况下提高镀层结合力(剥离强度>0.53 N/mm),从而有利于制作精细线路(线宽/线距=15 μm/15 μm)。

引言

先进封装包括PLPSOCSIP等封装,是顺应半导体行业向更小尺寸、更高性能发展趋势的新的高技术含量的封装技术[1]-[4] 。先进封装表面金属化可以实现封装体电磁屏蔽、散热、导电等功能,进一步减小封装器件的尺寸,并且提高封装器件的性能 [5]-[7] 。目前先进封装表面金属化存在粗糙度高、结合力低等问题,面临难以制作精细线路的挑战 [8]-[10] 。针对这一问题,本文通过优化封装材料表面粗化技术和使用低应力电镀铜镀液,成功实现低粗糙度高结合力的镀层,并完成精细线路的制作。

粗糙度

粗糙度是表征材料表面形貌的参数(如图1所示),其数值大小对镀层结合力有显著影响 [11] 。一般来讲,粗糙度越大越有利于镀层结合力的增加,因此提高镀层结合力的重要手段在于增加接触面的粗糙度。然而粗糙度过大不利于制作精细线路 [12] 

镀层应力

应力广泛存在于各种材料中,对材料的机械、化学等性能有重要影响 [13] 。电镀层的镀层应力会影响镀层硬度和开裂,例如应力越大的镀层其镀层机械性能越差。影响镀层应力的因素有很多,如镀液配方、电镀参数等 [14] 

实验方案

3.1 原理

如图2所示,首先对封装材料表面进行粗化,然后使用化学镀在表面镀上种子层金属铜(<1 μm),最后使用电镀铜增加镀层厚度(>10 μm)。

如图3所示,使用粗化方法A对封装材料EMC-1表面的树脂区域进行咬蚀,增大表面的粗糙度,然后使用化学镀在表面镀上种子层金属铜,最后使用电镀铜增加镀层厚度。

如图4所示,使用粗化方法B对封装材料EMC-2表面的填料区域进行咬蚀,增大表面的粗糙度,然后使用化学镀在表面镀上种子层金属铜,最后使用电镀铜增加镀层厚度。

3.2 试验材料及测试设备

本文所使用的封装材料均为环氧树脂塑封料(EMC),这种类型的封装材料占整个电子封装材料90%以上。EMC材料共有两种,差异主要体现在填料的筛分粒径不同——EMC-1EMC-2的筛分粒径分别为50 μm20 μm。测试设备包括激光共聚焦显微镜、电子扫描显微镜、剥离强度测试仪(如图5所示)、应力测试仪(如图6所示)。

实验结果及分析

EMC-1EMC-2粗化前后表面的SEM照片如图7所示。从图中结果可以看出,粗化后的EMC材料表面形貌较粗化前变得更加粗糙:(1)粗化后的EMC-1表面树脂区域被咬蚀的微坑尺寸明显增大;(2)粗化后的EMC-2表面填料区域出现了清晰的咬蚀裂纹。

为进一步分析粗化前后的EMC表面粗糙度,我们使用激光共聚焦显微镜EMC表面粗糙度进行表征,结果列于表1。从表1可以看出,EMC-1粗化后的表面粗糙度相较于粗化前显著增大,而EMC-2粗化后的表面粗糙度相较于粗化前增加不明显。这与图7的表征结果是一致的。

EMC表面电镀铜后的界面结构如图8所示。从图中可以看出,EMC-1/镀层界面起伏较大,这是由于EMC-1粗化后的表面粗糙度大(与图7d-f和表1一致)。EMC-2/镀层界面相较于EMC-1/镀层界面更加平坦,无显著起伏波动(与图7j-l和表1一致),这样的界面更易制作精细线路。

我们使用剥离强度来表征镀层与EMC之间的结合力。从表2可以看出,相较于未经过表面粗化处理的EMC材料,经过表面粗化处理后的EMC材料表面镀层的剥离强度显著增加,这表明EMC表面粗糙度对镀层结合力起重要作用。此外,不同的电镀铜镀液获得的镀层剥离强度不同:在相同前处理条件下,镀液2获得的镀层结合力要优于镀液1。这是由于镀液2的镀层应力更低(如表3所示),所以获得的镀层与基材之间的结合力更高。


在前面实验结果的基础上,我们使用SAP工艺在EMC-2表面制作精细线路。如图9所示,使用SAP工艺成功在EMC-2表面制作出线宽/线距=15 μm/15 μm的精细线路,且未出现线路脱落的现象,这表明该金属化工艺可以满足精细线路的制作要求。

结论

环氧塑封料是先进封装常用的封装材料。本文研究了湿化学工艺中前处理和电镀对两种填料粒径不同的EMC封装材料表面镀层结合力的影响,发现增加表面粗糙度和降低电镀铜层镀层应力可以有效提高镀层结合力:最大剥离强度可达0.92 N/mm。选择填料尺寸较小的EMC材料,可以在低的表面粗糙度下(Sz<18 μm)实现0.58 N/mm的镀层结合力,并且使用SAP工艺制作出线宽/线距=15 μm/15 μm的精细线路。这些实验结果为适应未来先进封装金属化更高的要求提供了解决思路,也为电介质-金属互联工艺提供了技术参考。

来源:半导体封装工程师之家



申明:感谢原创作者的辛勤付出。本号转载的文章均会在文中注明,若遇到版权问题请联系我们处理。


 

----与智者为伍 为创新赋能----


【说明】欢迎企业和个人洽谈合作,投稿发文。欢迎联系我们
诚招运营合伙人 ,对新媒体感兴趣,对光电产业和行业感兴趣。非常有意者通过以下方式联我们!条件待遇面谈
投稿丨合作丨咨询

联系邮箱:uestcwxd@126.com

QQ:493826566




评论 (0)
  • 在智能语音设备开发中,高音量输出是许多场景的核心需求,例如安防警报、工业设备提示、户外广播等。 WT588F02BP-14S 和 WTN6040FP-14S 两款语音芯片,凭借其内置的 D类功放 和 3W大功率输出 能力,成为高音量场景的理想选择。本文将从 性能参数、应用场景、设计要点 三大维度,全面解析这两款芯片的选型策略。一、核心参数对比与选型决策参数WT588F02BP-14SWTN6040FP-14S输出功率3W@4Ω(THD<1%)3W@4Ω(THD<0.8%)功
    广州唯创电子 2025-03-28 09:15 105浏览
  • 真空容器内部并非wan全没有压强,而是压强极低,接近于零。真空状态下的压强与容器内外气体的分子数量、温度以及容器本身的性质有关。一、真空与压强的基本概念真空指的是一个空间内不存在物质或物质极少的状态,通常用于描述容器或系统中气体的稀薄程度。压强则是单位面积上所受正压力的大小,常用于描述气体、液体等流体对容器壁的作用力。二、真空状态下的压强特点在真空状态下,容器内部的气体分子数量极少,因此它们对容器壁的作用力也相应减小。这导致真空容器内部的压强远低于大气压强,甚至接近于零。然而,由于技术限制和物理
    锦正茂科技 2025-03-29 10:16 134浏览
  • 你还记得,那些年疯狂追捧的淘宝网红店吗?它们曾是时尚的风向标,是很多人购物车里的常客,承载着无数年轻人的创业梦想。然而,最近这股网红店闭店潮,却如同一记重锤,敲醒了所有人。 从初代网红张大奕关闭“吾欢喜的衣橱”,到周扬青告别“GRACE CHOW”,再到拥有 190 万社交平台粉丝的“李大米 Lidami”宣布关闭淘宝店铺,以及“Ff5 official”“MAKI STUDIO”等大批网红店纷纷发出闭店通告,曾经风光无限的淘宝网红店,正在以惊人的速度消失。这一波闭店潮,涉及的店铺数量
    用户1742991715177 2025-03-27 23:22 55浏览
  • 3月27日,长虹中玖闪光超高剂量率电子射线放射治疗系统(e-Flash)临床试验项目在四川大学华西医院正式启动,标志着该项目正式进入临床试验阶段。这不仅是我国医学技术领域的一项重大突破,更是我国在高端医疗设备研发和应用方面的重要里程碑。e-Flash放射治疗系统适用于哪些病症,治疗周期为多久?会不会产生副作用?治疗费用高不高……随着超高剂量率电子射线放射治疗系统(e-Flash)正式进入临床试验阶段,社会各界对该项目的实施情况尤为关注。对此,中国工程院院士范国滨,以及四川大学华西医院、四川省肿瘤
    华尔街科技眼 2025-03-28 20:26 255浏览
  • 在工业控制与数据采集领域,高精度的AD采集和实时显示至关重要。今天,我们就来基于瑞芯微RK3568J + FPGA国产平台深入探讨以下,它是如何实现该功能的。适用开发环境如下:Windows开发环境:Windows 7 64bit、Windows 10 64bitLinux开发环境:Ubuntu18.04.4 64bit、VMware15.5.5U-Boot:U-Boot-2017.09Kernel:Linux-4.19.232、Linux-RT-4.19.232LinuxSDK:LinuxSD
    Tronlong 2025-03-28 10:14 157浏览
  • 一、真空容器的定义与工作原理真空容器是一种能够创造并保持一定真空度的密闭容器。其工作原理通常涉及抽气系统,该系统能够逐渐抽出容器内部的气体分子,从而降低容器内的气压,形成真空环境。在这个过程中,容器的体积并不会因抽气而改变,但容器内的压力会随着气体的抽出而逐渐降低。二、真空容器并非恒压系统真空容器并非一个恒压系统。恒压系统指的是在外部环境变化时,系统内部压力能够保持相对稳定。然而,在真空容器中,随着气体的不断抽出,内部压力会持续降低,直至达到所需的真空度。因此,真空容器内部的压力是变化的,而非恒
    锦正茂科技 2025-03-29 10:23 129浏览
  • 在智能语音交互设备开发中,系统响应速度直接影响用户体验。WT588F系列语音芯片凭借其灵活的架构设计,在响应效率方面表现出色。本文将深入解析该芯片从接收指令到音频输出的全过程,并揭示不同工作模式下的时间性能差异。一、核心处理流程与时序分解1.1 典型指令执行路径指令接收 → 协议解析 → 存储寻址 → 数据读取 → 数模转换 → 音频输出1.2 关键阶段时间分布(典型值)处理阶段PWM模式耗时DAC模式耗时外挂Flash模式耗时指令解析2-3ms2-3ms3-5ms存储寻址1ms1ms5-10m
    广州唯创电子 2025-03-31 09:26 91浏览
  • 文/杜杰编辑/cc孙聪颖‍3月11日,美国总统特朗普,将自费8万美元购买的特斯拉Model S,开进了白宫。特朗普此举,绝非偶然随性,而是有着鲜明的主观意图,处处彰显出一种刻意托举的姿态 。特朗普也毫不讳言,希望他的购买能推动特斯拉的发展。作为全球电动车鼻祖,特斯拉曾凭借创新理念与先进技术,开辟电动汽车新时代,引领行业发展潮流。然而当下,这家行业先驱正深陷困境,面临着前所未有的挑战。就连“钢铁侠”马斯克自己都在采访时表示“非常困难”,的确是需要美国总统伸手拉一把了。马斯克踏入白宫的那一刻,特斯拉
    华尔街科技眼 2025-03-28 20:44 173浏览
  • 本文介绍瑞芯微RK356X系列复用接口配置的方法,基于触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。复用接口介绍由下图可知,红圈内容当前引脚可配置为SPI0或者PWM0功能。由标准系统固件以及相关系统手册可得,当前接口默认配置为SPI0功能:console:/ # ls dev/spidev0.0dev/spidev0.0再由原理图可知当前GPIO为GPIO0_C3
    Industio_触觉智能 2025-03-28 18:14 118浏览
  • Shinco音响拆解 一年一次的面包板社区的拆解活动拉开帷幕了。板友们开始大显身手了,拆解各种闲置的宝贝。把各自的设计原理和拆解的感悟一一向电子爱好者展示。产品使用了什么方案,用了什么芯片,能否有更优的方案等等。不仅让拆解的人员了解和深入探索在其中。还可以让网友们学习电子方面的相关知识。今天我也向各位拆解一个产品--- Shinco音响(如下图)。 当产品连接上电脑的耳机孔和USB孔时,它会发出“开机,音频输入模式”的语音播报,。告诉用户它已经进入音响外放模式。3.5mm耳机扣接收电脑音频信号。
    zhusx123 2025-03-30 15:42 69浏览
  • 在智能家居领域,无线门铃正朝着高集成度、低功耗、强抗干扰的方向发展。 WTN6040F 和 WT588F02B 两款语音芯片,凭借其 内置EV1527编解码协议 和 免MCU设计 的独特优势,为无线门铃开发提供了革命性解决方案。本文将深入解析这两款芯片的技术特性、应用场景及落地价值。一、无线门铃市场痛点与芯片方案优势1.1 行业核心痛点系统复杂:传统方案需MCU+射频模块+语音芯片组合,BOM成本高功耗瓶颈:待机电流
    广州唯创电子 2025-03-31 09:06 58浏览
  • 语音芯片在播放音频时出现电流声是嵌入式音频系统开发中的常见问题,直接影响用户体验。唯创电子WT系列语音芯片在智能家居、工业控制等领域广泛应用,本文将从PWM直推输出与DAC+功放输出两类典型电路架构出发,系统化分析电流声成因并提供工程级解决方案。一、PWM直推输出电路电流声诊断1.1 现象特征高频"滋滋"声(8kHz-20kHz)声音随系统负载变化波动静音状态下仍存在底噪1.2 核心成因分析(1) 电源干扰开关电源纹波超标:实测案例显示,当12V转3.3V的DC-DC电源纹波>80mVpp时,P
    广州唯创电子 2025-03-28 08:47 99浏览
  • 真空容器的材料选择取决于其应用场景(如科研、工业、医疗)、真空等级(低真空、高真空、超高真空)以及环境条件(温度、压力、化学腐蚀等)。以下是常见材料及其优缺点分析:1. 不锈钢(如304、316L)优点:耐腐蚀性强:316L含钼,耐酸碱和高温氧化,适合高真空和腐蚀性环境。高强度:机械性能稳定,可承受高压差和外部冲击。低放气率:经电解抛光或镀镍处理后,表面放气率极低,适合超高真空系统(如粒子加速器、半导体镀膜设备)。易加工:可焊接、铸造,适合复杂结构设计。缺点:重量大:大型容器运输和安装成本高。磁
    锦正茂科技 2025-03-29 10:52 44浏览
  • 本文介绍OpenHarmony5.0 DevEco Studio开发工具安装与配置,鸿蒙北向开发入门必备!鸿蒙北向开发主要侧重于应用层的开发,如APP开发、用户界面设计等,更多地关注用户体验、应用性能优化、上层业务逻辑的实现,需要开发者具备基本的编程知识、对操作系统原理的简单理解,以及一定的UI设计感。由触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,支持开源鸿蒙OpenHarmony3.2至5.0系统,适合鸿蒙开发入门学习。下载与安装开发工具点下面链接下载:
    Industio_触觉智能 2025-03-28 18:16 173浏览
  •        随着智能驾驶向L3级及以上迈进,系统对实时性的要求已逼近极限。例如,自动紧急制动(AEB)需在50毫秒内完成感知、决策到执行的全链路响应,多传感器数据同步误差需小于10微秒。然而,传统基于Linux-RT的方案在混合任务处理中存在天然缺陷——其最大中断延迟高达200微秒,且多任务并发时易引发优先级反转问题。据《2024年智能汽车电子架构白皮书》统计,超60%的车企因实时性不足被迫推迟舱驾一体化项目落地。为旌电子给出的破局之道,是采用R5F(实
    中科领创 2025-03-29 11:55 199浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦