电化学测试|锂离子扩散系数GITT测试原理与实例

锂电联盟会长 2024-05-08 12:03
点击左上角“锂电联盟会长”,即可关注!

1.导读

在电化学储能器件中,电子传导和离子扩散对于电极材料性能的发挥至关重要。以锂离子电池为例(图1),电子通过外电路传输至材料表面,离子通过内电路扩散至材料内部,最终活性材料、电子和离子发生电化学反应,实现电能和化学能之间的相互转换。一般而言,外部电路的电子转移快于内电路的离子扩散,因此需要不断改善材料界面特性来使电荷快速达到平衡,避免材料表面发生净电荷累积,降低快速充放电过程中的极化[1] 。总之,离子在材料内部的扩散是重要的反应过程,也是电化学反应的限制步骤,如何准确表征离子扩散对于指导电极材料的设计合成有至关重要的作用。

图1 电子和离子在锂离子电池中的传导行为


2.恒电流间歇滴定法(GITT)

离子在材料内部的扩散是指离子从高浓度向低浓度的方向传输,致使材料内部离子浓度均一化的现象[1]。表征离子扩散速率大小的物理参数是离子扩散系数,其常见的测试手段有恒电流间歇滴定法(GITT)、恒电位间歇滴定法(PITT)、循环伏安法(CV)、电化学阻抗谱(EIS)、电流脉冲弛豫(CPR)、电位阶跃计时电流(PSCA)和电位弛豫法(PRT)等。由于篇幅有限,本文重点分享GITT技术,就测试原理、测试方法和应用实例进行详细总结。
2.1 基本原理
Galvanostatic intermittent titration technique (GITT)是通过分析电位与时间的变化关系而得到反应动力学行为信息的测试技术,最早是由德国科学家W.Weppner提出的。一个完整的GITT测试由多组“电流阶跃”单元构成,如图2所示。在每个电流阶跃单元内(图3),首先是在小电流下对电化学体系进行横流充放电一定时间,随后切断施加电流并保持一定时间使离子在活性物质内部充分扩散达到平衡状态,通过分析电极电位的变化和弛豫时间的关系,再结合活性材料的理化参数,即可推测和计算离子在内部的扩散系数反应。
由于GITT测试方法假设了离子的扩散行为主要发生在固相材料的表层,为了满足这一假设,在测试时对施加电流的时间t1和弛豫时间t2做了如下限定:
a)脉冲电流的施加时间t1必须要足够短,至少满足t1<2/D,其中L为材料的特征长度,D为离子的扩散系数;
b)弛豫时间t2必须足够长,使Li+在活性物质内部充分扩散达到平衡状态,以电压基本保持稳定为判定标准。
图2 完整的GITT曲线
图3 一个电流阶跃内电压与时间的曲线
2.2 核心公式
GITT求解离子扩散系数的理论基础来源于Fick定律。由于Fick第一定律只适用于稳态扩散,即各处的扩散组元的浓度只随距离变化,而不随时间变化。而实际锂离子在材料中的扩散既包含稳态行为又包含非稳态行为,因此只能用Fick第二定律来描述,即各处的扩散组元的浓度随距离和时间的变化而变化。
结合初始条件、边界条件,并忽略离子嵌入活性材料颗粒内部的体积变化,那么可对Fick第二定律进行求解,得到离子扩散系数D的解:
其中:已知的参数有i-电流(mA),ZLi-锂离子的电荷数1,F-法拉第常数(96485 C/mol),S-电极/电解质接触面积;未知的参数有dE/dδ是库仑滴定曲线的斜率,dE/d√t电势与时间的关系[2]。
当施加的电流足够小且弛豫时间τ足够短时,dE/d√t成线性关系,该计算公式可进行进一步简化成:
其中:τ是弛豫时间,nm是摩尔数,Vm是摩尔体积,S是电极/电解质接触面积,∆Es是脉冲引起的总电压变化,∆Et是恒电流充充/放电的电压变化。
值得说明的是,在给电极施加电流的瞬间,由于存在欧姆电阻和电荷转移阻抗,电极电势会迅速升高/降低,整个过程是暂态行为;随后,随会维持施加电流恒定,电势才开始缓慢变化,因此充放电过程中的∆Et不包括iR引起的电压变化,如图4所示。此外,不难发现D的大小与弛豫时间有关,因此为了测试结果尽量准确,应确保弛豫时间足够长,保证电极电势基本不再变化。
图4 GITT曲线中放电(上)/充电(下)过程中的电流阶跃
只要测试得到各个“脉冲-弛豫” 单元内的∆Es和∆Et,即可计算出整个充放电过程中锂离子扩散速率的随电位/充放电深度的变化关系,如图5所示。
图5 不同电位下锂离子扩散系数


3.GITT测试教程

GITT一般是在充放电测试仪或电化学工作站上测试。在此以新威恒电流充放电测试仪为例,介绍GITT的测试过程。
(1)双击新威恒电流充放电测试仪操作软件(图6)进入测试界面(图7)。
图6 新威恒电流充放电测试仪操作软件
图7 新威恒电流充放电测试仪主界面
(2)选择一个测试通道,右键进入测试程序编辑界面。为了恒电流间歇式作用于测试电极(图8),将测试工步按照图9(正极)和图10(负极)设置工步。需要注意的是,GITT测试的脉冲恒电流要小,一般以0.1C/0.1A计算;脉冲时间要比较短,大部分文献在10-30min之间;扩散时间(弛豫时间)足够长,至少保证电压恢复到基本不再变化为止。
图8 GITT测试电流-时间曲线
图9 典型正极材料的设置程序
图10 典型负极材料的设置程序
GITT测试时“先放电还是先充电” 应与恒流充放电测试一致,如S、V2O5、FePO4正极材料与Li配对时,需要先放电才能进行充电,那么GITT测试时也应先放电再充电。
(3)测试结束后的数据展示在图11中。
图11 GITT测试完成后的数据展示


4.实用实例
实例1:作者报道了一种新型耐高温、高负载量的新型磷酸铁锂(UCFR-LFP)复合电极。循环及倍率测试结果表明,该电极不论是在倍率还是循环性能都远优于传统的磷酸铁锂电极(Con-LFP)。通过GITT测试,发现UCFR-LFP电极的平均锂离子扩散系数(3.6×10−11 cm2 s−1),明显优于Con-LFP(5×10−12 cms−1)。结合其他结构表征,作者分析这一原因可能源于UCFR-LFP独特的复合多孔结构,既可以保证活性物质和导电剂之间紧密的导电接触,又能够促进电解液在整个电极内部的扩散和传输,还可以优化电极的电子和离子传输通道。
图12 两种LFP电极的倍率性能对比[2]
图13 两种LFP电极的GITT曲线对比[3]
实例2:作者报道了一系列钒酸钾纳米材料作为水系锌离子电池(ZIBs)的正极材料。通过GITT分析,发现了具有隧道结构的K2V8O21和K0.25V2O5有助于锌离子扩散,而结构容易坍塌的层状KV3O8和K2V6O16·1.57H2O具有低锌离子扩散系数,因此很难获得高的容量。
图14 四种电极的GITT曲线(a-d)及锌离子扩散系数(e-h)[4]



5.参考文献
[1] 郑浩, 高健, 王少飞,等. 锂电池基础科学问题(Ⅵ)——离子在固体中的输运[J]. 储能科学与技术, 2013, 2(006):620-635.
[2] 凌仕刚, 吴娇杨, 张舒,等. 锂离子电池基础科学问题(ⅫⅠ)——电化学测量方法[J]. 储能科学与技术, 2015, 4(001):83-103.
[3] Li H, Peng L, Wu D, et al. Ultrahigh-Capacity and Fire-Resistant LiFePO4-Based Composite Cathodes for Advanced Lithium-Ion Batteries[J]. Advanced Energy Materials, 2019, 9(10):1802930.
[4] Boya T, Guozhao F, Jiang Z, et al. Potassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries[J]. Nano Energy, 2018, 51: 579-587.
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 114浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 44浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 180浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦