DC-DC降压转换器PCB布局的技巧和技巧

摩尔学堂 2024-05-07 15:58

在实现 DC-DC 降压转换器时,电路布局与设计同样重要。糟糕的布局可能会严重削弱出色的设计。

本文将介绍一些最佳布局实践。  

良好电路布局的目标

以下是需要牢记的一些良好布局的目标。

  • 辐射和感应噪声的控制

  • 减少电路不同部分之间的干扰

  • 减少电路面积

  • 有效的热管理

  • 改善电压调节和电路效率

  • 避免缓冲器等额外的“创可贴”电路

  • 增强稳定性

注意:不要对这些关键路径使用自动布线——手动布线和设计。 

电源转换器电路中的电流环路

电源转换器电路会产生大电流,这些电流在不同阶段在两个主要回路中循环:关断状态和导通状态,具体取决于 MOSFET 开关的状态(见图 1)。

图1(a):通态电流环路;  1(b) 断态循环。点击放大

这些环的 3D 几何形状很重要。根据安培定律,在物理环路中运行的电流将形成与电流和环路面积成比例的磁场。然后,根据法拉第定律,该场可以与其他电路环路耦合,在较高频率下耦合程度更高,从而导致有害的串扰。

因此,一般的想法应该是尽量减少这些环路的封闭面积。实现此目的的一种简单方法是使返回路径尽可能与出站路径共线。

想象一个环形天线被压扁成一条垂直线——它将不再是天线。这就是为什么我们将电线绞合在一起以消除耦合噪声的原因。

返回路径

请注意,如果给定无限大的接地平面,返回电流自然会集中在出站电流的正下方(见图 2)。我们应该从大自然中汲取这一暗示,并提供自然的回归路径;否则,将引入环路并辐射。

电路板的期望结果是出站和返回电流按有序、已知的路径运行。

图 2:自然返回电流路径

通常,电路具有多个接地层:例如,模拟、数字和电源。尽管多年来对此的传统看法有所不同,但如果提供了这些自然返回路径,我们就不需要划分地平面。事实上,如果计划外的返回电流必须绕过它很长的路线,分区会使事情变得更糟。

除了智能分区之外,自然电流路径可能是最好的解决方案。

快速最佳实践

当然,一个关键的考虑因素是电源轨进入或源自电路板的位置。如果这些考虑因素在设计师的控制之下,那么应该选择这些因素来促进良好的布局。请注意,相同的环路原理也应适用于 MOSFET 栅极驱动,因为它也具有大的尖峰电流。

为了进一步控制辐射发射,“20H 规则”规定,对于间距为 H 的层,我们将所有走线与板边缘保持至少 20H。通常需要使用电源过孔将电源路径推至其他层以获得紧凑的布局 - 您只需像管理电源路径中的任何其他元素一样管理这些过孔的影响即可。电感、电阻和过孔总数都会影响路径性能。

敏感的控制电路需要干净的接地。如果我们通过控制器共享的返回路径发送大的脉冲功率返回电流,则会产生电压尖峰,这将扰动控制器的接地,将噪声注入控制电路,这是非常不希望的。我们使用星形接地来避免这种情况(参见图 3)——它使返回路径保持不共享和独立。

图3:星形接地

在绕过 IC 的电源电压时,始终首先优先考虑高频组件。避免使用过孔并直接连接到 IC 引脚。

考虑 IC 制造商的示例布局(例如评估板)作为指导。但是,请记住,电路板的层叠和设计目标可能与您的不同,例如,在牺牲其他参数的情况下实现最佳热性能。

对于电源走线,宽度、长度和厚度的设计必须限制电压降和走线电感。由于当今的输出电压较低,压降比以往任何时候都更加重要。

我们需要指导的另一个主要定律是电容耦合——彼此靠近的两个板(电路节点)将与板面积和它们之间的距离成比例地耦合,在较高频率和较高接收节点时耦合更多阻抗。 

例如,电压反馈是通过将检测引脚连接到输出来实现的,并且该信号应远离开关节点和电感器等噪声源。检测引脚节点为高阻抗,因此更容易受到电容耦合的影响 - 使其尽可能小并与噪声源隔离。介入的直流平面也可以减少耦合。

具有高dv/dt瞬态的节点(例如开关节点)需要保持较小和隔离,同时仍保持足够的电流容量,这样它们就不会成为噪声源。 

如果一个电源轨有多个负载点,则需要对传感点放置进行必要的折衷 — 您可以优先选择一个负载或集中放置。如果传感信号是差分的,那很好,但它应该像传输线一样布线。将任何检测电路电阻器放置在 IC 附近。

一块板应该有多少层?更多层数意味着更多布线空间以及更多可提供屏蔽的电源和接地层,但也意味着更多过孔和更高成本。对于现代转换器 IC,您可能应该至少有四层。此外,层数通常不受电源设计人员的控制,而是由其他考虑因素决定。一般来说,层数越少,获得有效布局所需的创意就越多。

散热考虑

布局也受到热考虑因素的影响,最明显的是 IC 和 MOSFET 的导热垫,大部分热量通过导热垫传导到电路板,然后辐射到空气中。热焊盘尺寸和层数、过孔数量、最高环境温度和可用气流都需要考虑。最终,MOSFET 可能需要外部散热器。该数据表将至少提供一个热示例,您可以使用它来指导您的热设计。

另外,一定要知道是否对 IC 焊盘进行电气连接——数据表中并不总是指定。如果有空间,一个不错的技巧是将焊盘延伸到顶层 IC 边缘之外,为您提供一个加热它的地方,以便更容易抬起 IC。




6月20日-21日将在上海举办一期高级电源管理芯片设计课程,本课程将讲述电源管理电路中最常见的模块LDO和DC-DC的相关知识、设计技巧和前沿揭秘,包括模拟LDO,数字LDO,电感型DC-DC,电容型DC-DC和最近关注度很高的混合型DC-DC。

--点击图片即转至课程页面

--------------------

今天小编带来了:ISSCC2024套餐,里面有文章、Short Course、PPT、Tutorial等,同学可以拿回去自己学习研究。

ISSCC2024完整资料领取方式如下   

识别关注下方公众号
公众号对话框输入 2024 
由于公众号后台资料容量有限
每份资料有效期为30天,过期会被更新删除
资料仅供个人学习使用,禁止分享与转发!
大家如果需要,请及时下载!

1、深入理解SerDes(Serializer-Deserializer)之一

2、深入理解SerDes(Serializer-Deserializer)之二

3、科普:深入理解SerDes(Serializer-Deserializer)之三

4、资深工程师的ESD设计经验分享

5、干货分享,ESD防护方法及设计要点!

6、科普来了,一篇看懂ESD(静电保护)原理和设计!

7、锁相环(PLL)基本原理 及常见构建模块

8、当锁相环无法锁定时,该怎么处理的呢?

9、高性能FPGA中的高速SERDES接口

10、什么是毫米波技术?它与其他低频技术相比有何特点?

11、如何根据数据表规格算出锁相环(PLL)中的相位噪声

12、了解模数转换器(ADC):解密分辨率和采样率

13、究竟什么是锁相环(PLL)

14、如何模拟一个锁相环

15、了解锁相环(PLL)瞬态响应

16、如何优化锁相环(PLL)的瞬态响应

17、如何设计和仿真一个优化的锁相环

18、锁相环(PLL) 倍频:瞬态响应和频率合成

19、了解SAR ADC

20、了解 Delta-Sigma ADC

21、什么是数字 IC 设计?

22、什么是模拟 IC 设计?

23、什么是射频集成电路设计?

24、学习射频设计:选择合适的射频收发器 IC

25、连续时间 Sigma-Delta ADC:“无混叠”ADC

26、了解电压基准 IC 的噪声性能

27、数字还是模拟?I和Q的合并和分离应该怎么做?

28、良好通信链路性能的要求:IQ 调制和解调

29、如何为系统仿真建模数据转换器?

30、干货!CMOS射频集成电路设计经典讲义(Prof. Thomas Lee)

31、使用有效位数 (ENOB) 对 ADC 进行建模

32、以太网供电 (PoE) 的保护建议

33、保护高速接口的设计技巧

34、保护低速接口和电源电路设计技巧

35、使用互调多项式和有效位数对 ADC 进行建模

36、向 ADC 模型和 DAC 建模添加低通滤波器

37、揭秘芯片的内部设计原理和结构

38、Delta-Sigma ADCs中的噪声简介(一)

39、Delta-Sigma ADCs中的噪声简介(二)

40、Delta-Sigma ADCs 中的噪声简介(三)

41、了解Delta-Sigma ADCs 中的有效噪声带宽(一)

42、了解Delta-Sigma ADCs 中的有效噪声带宽(二)

43、放大器噪声对 Delta-Sigma ADCs 的影响(一)

44、放大器噪声对 Delta-Sigma ADCs 的影响(二)

45、参考电压噪声如何影响 Delta Sigma ADCs

46、如何在高分辨率Delta-Sigma ADCs电路中降低参考噪声

47、时钟信号如何影响精密ADC

48、了解电源噪声如何影响 Delta-Sigma ADCs

49、运算放大器简介和特性

50、使用 Delta-Sigma ADCs 降低电源噪声的影响

51、如何设计带有运算放大器的精密电流泵

52锁定放大器的基本原理

53了解锁定放大器的类型和相关的噪声源

54、用于降低差分 ADC 驱动器谐波失真的 PCB 布局技术

55、干货!《实用的RFIC技术》课程讲义

56、如何在您的下一个 PCB 设计中消除反射噪声

57、硅谷“八叛徒”与仙童半导体(Fairchild)的故事!   

58、帮助你了解 SerDes!                                    

往期精彩课程分享

1、免费公开课ISCAS 2015 :The Future of Radios_ Behzad Razavi

2、免费公开课:从 5 微米到 5 纳米的模拟 CMOS(Willy Sansen)

3、免费公开课:变革性射频毫米波电路(Harish Krishnaswamy)

4、免费公开课:ESSCIRC2019-讲座-Low-Power SAR ADCs

5免费公开课:ESSCIRC2019-讲座-超低功耗接收器(Ultra-Low-Power Receivers)

6、免费公开课:CICC2019-基于 ADC 的有线收发器(Yohan Frans Xilinx)

7、免费公开课:ESSCIRC 2019-有线与数据转换器应用中的抖动

8、免费公开课:ISSCC2021 -锁相环简介-Behzad Razavi

9、免费公开课:ISSCC2020-DC-DC 转换器的模拟构建块

10、免费公开课:ISSCC2020-小数N分频数字锁相环设计

11、免费公开课:ISSCC2020-无线收发器电路和架构的基础知识(从 2G 到 5G)

12、免费公开课:ISSCC2020-从原理到应用的集成变压器基础

13、免费公开课:ISSCC2021-射频和毫米波功率放大器设计的基础

14、免费公开课:ISSCC 2022-高速/高性能数据转换器系列1(Prof. Boris Murmann)

15、免费公开课:ISSCC 2022-高速/高性能数据转换器系列2(Dr. Gabriele Manganaro)

16、免费公开课:ISSCC 2022-高速/高性能数据转换器系列3(Prof. Pieter Harpe

17、免费公开课:ISSCC 2022-高速/高性能数据转换器系列4(Prof. Nan Sun)





专注于半导体人才培训,在线学习服务平台!


人才招聘服务平台


摩尔学堂 摩尔学堂专注于半导体人才培训,在线培训与学习服务平台,泛IC领域MOOC分享互动平台。 www.moorext.com
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 171浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 96浏览
  • 在电子工程领域,高速PCB设计是一项极具挑战性和重要性的工作。随着集成电路的迅猛发展,电路系统的复杂度和运行速度不断提升,对PCB设计的要求也越来越高。在这样的背景下,我有幸阅读了田学军老师所著的《高速PCB设计经验规则应用实践》一书,深感受益匪浅。以下是我从本书中学习到的新知识和经验分享,重点涵盖特殊应用电路的PCB设计、高速PCB设计经验等方面。一、高速PCB设计的基础知识回顾与深化 在阅读本书之前,我对高速PCB设计的基础知识已有一定的了解,但通过阅读,我对这些知识的认识得到了进一步的深
    金玉其中 2024-12-05 10:01 36浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 115浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 99浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 143浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 110浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 146浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 144浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦