电动汽车底盘常见故障处理方法

谈思实验室 2024-05-06 17:55

点击上方蓝字谈思实验室

获取更多汽车网络安全资讯

电动汽车底盘的检查包括底盘破损、变形、螺丝松动、油液渗漏等问题,图1所示为电动汽车的底盘。

01

变速器故障

变速器(图2)担负着变速、变扭矩、实现倒车并利用空挡暂时切断动力等任务,使得汽车适应各种条件下的行驶,并能满足“不跳挡、不乱挡、不漏油、无异响、传动平稳、变换挡位自如”的技术要求。

因为汽车在行驶过程中,变速器各运动部件经常处于高转速、大负荷的工作条件下,当行驶道路复杂时,挡位变换频繁。在换挡过程中,变速器内部齿轮之间、齿轮和轴之间因相对运动的变化而发生冲击,使各部件产生磨损,特别是装配调整不当或驾驶人操作不当,则会加剧磨损,甚至造成机件的损坏,从而使变速器发生故障。如图3所示,齿轮油(变速器油)是电动汽车需要频繁更换的油液,但各厂商的更换周期不同。变速器常见故障及处理方法见表3。

02

转向系统故障

转向装置主要由转向器与传动机构两部分组成,转向装置技术状况的好坏直接影响到汽车行驶的平顺性、操纵稳定性、安全可靠性以及轮胎的磨损等。随着汽车行驶里程的增加,转向装置中某些机件将由于磨损而失去正确的几何形状,配合间隙也不断增大,转向装置的技术状况不断变差,最终可能产生以下种种故障。

(1)方向盘自由行程过大

故障现象:汽车实施转向或接收路面感觉不灵敏,方向盘游动间隙大于规定标准,方向盘虽然转动了很多,但转向轮没有发生偏转,或方向盘不动而转向轮却自动偏转。

故障原因:方向盘和转向轴固定螺母松动;转向器主、从动部分啮合间隙过大,摇臂轴与衬套间松旷;转向器内主、从动轴承松旷;横、直拉杆球节调节不当或磨损松旷;转向节主销与衬套磨损严重等。

处理方法:两人配合,一人在车上转动方向盘,另一人在车下观察摇臂和转向轮。如果方向盘已转动很多而摇臂并不摆动,说明故障在转向器部分;如果摇臂已转动很多而前轮不偏转,则故障在传动机构。

(2)转向沉重

 故障现象:汽车在运行中,驾驶人向左或右转动方向盘时,感觉沉重吃力而且无回正感。当汽车以低速转弯状态行驶时,转动方向盘非常吃力,甚至打不动方向盘。

故障原因:转向轴弯曲变形;转向器内主动部分的轴承预紧力过大;转向器内缺油;摇臂轴和衬套装配过紧;主销内倾、后倾角度变大或前束不符合要求;前钢板弹簧挠度尺寸不满足要求;轮胎气压不足。

 处理方法:支起前桥,如果转向轻便,则故障在前轴、轮胎等部位;如果转向沉重,则故障在转向器或传动机构。

(3)前轮摇摆

故障现象:汽车在一定速度下行驶时,两前轮各自绕主销产生角振动,一般为前轮摆动。前轮左右摆动严重时,方向盘抖振强烈,手感发麻,甚至在驾驶室内都可以看到车头晃动,此时,前轮沿着一条弯曲的波形轨迹向前滚动。

故障原因:前轮定位失常;转向机构松旷;前轮质量不平衡;转向系统刚度低,U形螺栓或钢板销和衬套松旷;前悬架运动干涉;道路不平等。

处理方法:检查并调整前轮定位参数、转向机构、前轮的动平衡等。

(4)行驶跑偏

故障现象:汽车在平直路面上行驶时,无法保持直线行驶,总是自动偏向道路某一边,必须用力把住方向盘才能直线行驶。

故障原因:前桥或车架变形;前轮轮毂轴承与主销松旷;定位参数改变;前轮轮胎新旧程度不同或气压不一致;减振器失效等。

处理方法:在平坦地段检查轮胎磨损与气压;检查前桥、车架有无变形及钢板弹簧的片数;路试检查制动鼓上轮毂的温度。

03

制动系统故障

制动系统是汽车最重要的安全系统之一,一旦发生故障,后果将不堪设想。汽车制动系统常见故障及处理方法如下。

(1)制动不良或失灵

①制动管(如接头处)渗漏或阻塞,制动液不足,制动油压下降导致制动失灵。需定期检查制动管路,排除渗漏、添加制动液、疏通管路。

②制动管内进入空气使制动迟缓,制动管路受热,管内残余压力太小,导致制动液气化,管路内出现气泡。因为气体可压缩,所以在制动时导致制动力矩下降。维护时,可将制动轮缸及管内空气排净并加足制动液。

③制动间隙不当。制动摩擦片工作面和制动鼓内壁工作面的间隙过大,制动时轮缸活塞行程过大,导致制动迟缓、制动力矩下降。维修时,按照规范全面调校制动间隙,即用平头螺钉旋具从检查孔拨动棘轮,将制动蹄完全张开,使间隙消除,再将棘轮退回3-6齿,以达到所要求的间隙。

④制动鼓与摩擦衬片接触不良,以致摩擦衬片与制动鼓接触不良,制动摩擦力矩下降。如果发现此现象,必须校正修复,需要的话可以更换新件。

⑤制动摩擦片被油垢污染或浸水受潮,摩擦系数快速降低,引起制动失灵。维护时,拆下摩擦片用汽油清洗,并用喷灯加热烘烤,使渗入片中的油渗出来,渗油严重时必须更换新片。对于浸水的摩擦片,可用连续制动来产生热能使水蒸发,恢复其摩擦系数即可。

⑥制动主缸、轮缸皮碗(或其他件)损坏,制动管路无法产生必要的内压,油液漏渗,致使制动不良。应及时拆检制动主缸、轮缸皮碗,更换磨蚀损坏部件。

(2)制动单边

①同轴左右两边制动器制动时间不一致,通常是两边制动器制动间隙不均或接触面积差异所引起的。制动时,一侧摩擦片先接触制动鼓进行制动,而另一侧由于间隙大、摩擦片与制动鼓接触滞后,制动不同步。遇此现象,可重新校对左右轮制动间隙。

②同轴两边制动器的制动力矩不同,使得车轮转速不同,直线行驶的距离就不相等,从而造成制动单边。这一般是因为某边制动轮缸漏油、制动摩擦片油污严重、摩擦系数出现差异或左右轮胎气压不等所造成的。可用汽油清洗摩擦片、检查轮胎气压、修复渗漏处等。

③不踩制动踏板汽车就自动滑行到一侧。这通常为一侧前悬架变形、前悬架车身底板变形、前悬架螺旋弹簧弹力严重下降以及车架等相关部位在汽车制动时相互干涉或不协调所致。遇上述情况,查明原因后加以修复。

④制动时车轮自动向一边转弯而跑偏。这主要是由两边制动鼓和摩擦片工作表面粗糙度不同,或一侧制动管路接头堵塞等引起的。应分别查找根源,加以修复。

⑤左右轮胎气压不均造成跑偏。左右轮胎充气气压必须一致,否则因两边车轮的实际转动半径不同、行驶的直线距离不等而出现侧滑。必须给各轮胎按规定充气。

 ⑥除上述原因以外,还有车轮定位失准及左右轮胎磨损不同,由此路面对左右车轮的阻力差也会引起跑偏侧滑。遇此情况,找准原因之后分别进行调校或更换部件。

(3)制动噪声

①制动鼓失圆,其圆度误差较大,制动鼓工作面变形,制动时摩擦片和制动鼓贴合瞬间发生碰撞,同时发出尖锐的撞击响声。维护时,拆下制动鼓进行撞削,并需进行平衡性能校验。

②制动摩擦片表面太光滑、摩擦系数小而制动压力大时,光滑的表面滑磨就会产生摩擦噪声,或在摩擦副之间塞进了异物挤压摩擦表面,由此也会发出摩擦噪声。维修时可拆下制动鼓,清除异物并用粗砂纸打磨摩擦片,并使其配合摩擦副接触面积达到70%以上即可。

③制动摩擦片严重磨损,表面出现沟槽和不规则形状,制动时无法完全有效地和制动鼓贴合,或制动支撑板变形,破坏了鼓和片的同轴度,局部摩擦、碰撞而出现噪声。维修时,应更换摩擦片,校正制动支撑板。

④前轮轴承损坏、滚道和滚珠表面出现麻坑、沟槽甚至碎裂,行驶中制动就会发出异响。可更换前轴头轴承,即可消除此噪声。

(4)制动鼓发热

①当放松制动踏板时,制动力未完全解除,使得摩擦副长时间处于摩擦状态,引起起步困难、行驶无力,用手触摸轮毂表面感到烫手。遇此情况,需重新调节制动间隙。

②驻车制动手柄没完全放开,其原因是操作上的疏忽,导致摩擦副长时间处于摩擦状态而发热,必要时按规范调整手柄。

③制动产生的热量使回位弹簧受热变形、弹力下降或消失,不能确保制动摩擦片总成及时回位,便无法及时彻底解除制动而使制动鼓发热。应及时检修或更换回位弹簧,即可消除故障。

(5)驻车制动失灵

常见故障包括拉索或外套锈蚀,牵引弹簧折断、脱落等,导致驻车制动操纵拉索或制动拉索在其外套内拉动不灵活,由此造成驻车制动松不开而工作失效。需检查制动操纵拉索和制动系统部件表面有无损伤,手柄操纵动作是否灵活,有无卡滞现象,拉索连接头及固定部位是否松动、损坏。检修时,对拉索加注润滑脂进行润滑,或更换损坏件,重新调整制动手柄转动量。

04

行驶系统故障

汽车行驶系统状况的好坏直接影响到汽车行驶的平顺性和操纵稳定性,所以,对于行驶装置的常见故障应及时处理。

(1)悬架发生刚性碰撞或异响

故障现象:汽车行驶中悬架发生撞击,出现异响,振动强烈。

故障原因:钢板弹簧销或螺旋弹簧产生塑性变形;减振垫、限位块损坏;润滑不良;减振器失效等。

处理方法:检查悬架是否变形、松动以及减振垫的润滑情况,必要时添加润滑脂;检查减振器是否损坏。

(2)轮胎异常磨损

故障现象:轮胎出现两肩磨损、胎冠中部磨损、内侧磨损、锯齿形磨损或波浪形磨损。

故障原因:前车轮外倾角和前束不符合要求;车轮轮毂轴承磨损、松旷;轮胎不平衡量过大,轮胎气压不正常;减振器失效,轮毂变形。

处理方法:检查减振器是否失效,轮毂是否变形,必要时更换;检查车轮轮毂轴承是否磨损、松旷,轮胎气压是否正常,必要时调整、补气、做轮胎动平衡。

来源:学而为科技

 专业社群 

 精品活动推荐 

更多文章

不要错过哦,这可能是汽车网络安全产业最大的专属社区!

关于涉嫌仿冒AutoSec会议品牌的律师声明

一文带你了解智能汽车车载网络通信安全架构

网络安全:TARA方法、工具与案例

汽车数据安全合规重点分析

浅析汽车芯片信息安全之安全启动

域集中式架构的汽车车载通信安全方案探究

系统安全架构之车辆网络安全架构

车联网中的隐私保护问题

智能网联汽车网络安全技术研究

AUTOSAR 信息安全框架和关键技术分析

AUTOSAR 信息安全机制有哪些?

信息安全的底层机制

汽车网络安全

Autosar硬件安全模块HSM的使用

首发!小米雷军两会上就汽车数据安全问题建言:关于构建完善汽车数据安全管理体系的建议

谈思实验室 深入专注智能汽车网络安全与数据安全技术,专属汽车网络安全圈的头部学习交流平台和社区。平台定期会通过线上线下等形式进行一手干货内容输出,并依托丰富产业及专家资源,深化上下游供需对接,逐步壮大我国汽车安全文化及产业生态圈。
评论 (0)
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 53浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 52浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 78浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 73浏览
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 60浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 140浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 75浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 125浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 70浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 25浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 42浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 118浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 34浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦