传感器标定是自动驾驶的基本需求,一个车上装了多个/多种传感器,而它们之间的坐标关系是需要确定的。湾区自动驾驶创业公司ZooX的co-founder和CTO是Sebastia Thrun的学生Jesse Levinson,他的博士论文就是传感器标定。
这个工作可分成两部分:内参标定和外参标定,内参是决定传感器内部的映射关系,比如摄像头的焦距,偏心和像素横纵比(+畸变系数),而外参是决定传感器和外部某个坐标系的转换关系,比如姿态参数(旋转和平移6自由度)。
摄像头的标定曾经是计算机视觉中3-D重建的前提,张正友老师著名的的Zhang氏标定法,利用Absolute Conic不变性得到的平面标定算法简化了控制场。
这里重点是,讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。
另外在自动驾驶研发中,GPS/IMU和摄像头或者激光雷达的标定,雷达和摄像头之间的标定也是常见的。不同传感器之间标定最大的问题是如何衡量最佳,因为获取的数据类型不一样:
摄像头是RGB图像的像素阵列;
激光雷达是3-D点云距离信息(有可能带反射值的灰度值);
GPS-IMU给的是车身位置姿态信息;
雷达是2-D反射图。
这样的话,实现标定误差最小化的目标函数会因为不同传感器配对而不同。
另外,标定方法分targetless和target两种,前者在自然环境中进行,约束条件少,不需要用专门的target;后者则需要专门的控制场,有ground truth的target,比如典型的棋盘格平面板。
这里仅限于targetless方法的讨论,依次给出标定的若干算法。
来源: AUTO行家
--END--