智能汽车自动驾驶系统的传感器标定方法分析



关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯


传感器标定是自动驾驶的基本需求,一个车上装了多个/多种传感器,而它们之间的坐标关系是需要确定的。湾区自动驾驶创业公司ZooX的co-founder和CTO是Sebastia Thrun的学生Jesse Levinson,他的博士论文就是传感器标定。


这个工作可分成两部分:内参标定和外参标定,内参是决定传感器内部的映射关系,比如摄像头的焦距,偏心和像素横纵比(+畸变系数),而外参是决定传感器和外部某个坐标系的转换关系,比如姿态参数(旋转和平移6自由度)。


摄像头的标定曾经是计算机视觉中3-D重建的前提,张正友老师著名的的Zhang氏标定法,利用Absolute Conic不变性得到的平面标定算法简化了控制场。


这里重点是,讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。


另外在自动驾驶研发中,GPS/IMU和摄像头或者激光雷达的标定,雷达和摄像头之间的标定也是常见的。不同传感器之间标定最大的问题是如何衡量最佳,因为获取的数据类型不一样:


摄像头是RGB图像的像素阵列;


激光雷达是3-D点云距离信息(有可能带反射值的灰度值);


GPS-IMU给的是车身位置姿态信息;


雷达是2-D反射图。


这样的话,实现标定误差最小化的目标函数会因为不同传感器配对而不同。


另外,标定方法分targetless和target两种,前者在自然环境中进行,约束条件少,不需要用专门的target;后者则需要专门的控制场,有ground truth的target,比如典型的棋盘格平面板。


这里仅限于targetless方法的讨论,依次给出标定的若干算法。



手-眼标定

这是一个被标定方法普遍研究的,一定约束条件下的问题:可以广义的理解,一个“手”(比如GPS/IMU)和一个“眼”(激光雷达/摄像头)都固定在一个机器上,那么当机器运动之后,“手”和“眼”发生的姿态变化一定满足一定的约束关系,这样求解一个方程就可以得到“手”-“眼”之间的坐标转换关系,一般是AX=XB形式的方程。


手眼系统分两种:eye in hand和eye to hand,我们这里显然是前者,即手-眼都在动的情况。

手眼标定分两步法和单步法,后者最有名的论文是“hand eye calibration using dual quaternion"。一般认为,单步法精度高于两步法,前者估计旋转之后再估计平移。

这里通过东京大学的论文“LiDAR and Camera Calibration using Motion Estimated by Sensor Fusion Odometry”来看看激光雷达和摄像头的标定算法。
显然它是求解一个手-眼标定的扩展问题-,即2D-3D标定,如图所示:


手眼系统分两种:eye in hand和eye to hand,我们这里显然是前者,即手-眼都在动的情况。

手眼标定分两步法和单步法,后者最有名的论文是“hand eye calibration using dual quaternion"。一般认为,单步法精度高于两步法,前者估计旋转之后再估计平移。

这里通过东京大学的论文“LiDAR and Camera Calibration using Motion Estimated by Sensor Fusion Odometry”来看看激光雷达和摄像头的标定算法。
显然它是求解一个手-眼标定的扩展问题-,即2D-3D标定,如图所示:


手眼标定的典型解法是两步法:先求解旋转矩阵,然后再估计平移向量,公式在下面给出:


现在因为scale问题,上述解法不稳定,所以要利用激光雷达的数据做文章,见下图:


3-D点云的点在图像中被跟踪,其2D-3D对应关系可以描述为如下公式:
而求解的问题变成了:


上面优化问题的初始解是通过经典的P3P得到的。

得到摄像头的运动参数之后可以在两步手眼标定法中得到旋转和平移6参数,其中平移估计如下:


注:这里估计摄像头运动和估计手眼标定是交替进行的,以改进估计精度。除此之外,作者也发现一些摄像头运动影响标定精度的策略,看下图分析:


可以总结出:1)摄像头实际运动a 越小,投影误差越小;2) ( )越小,投影误差越小。第一点说明标定时候摄像头运动要小,第二点说明,标定的周围环境深度要变化小,比如墙壁。

另外还发现,增加摄像头运动的旋转角,摄像头运动估计到手眼标定的误差传播会小。

这个方法无法在室外自然环境中使用,因为点云投影的图像点很难确定。

有三篇关于如何优化激光雷达-摄像头标定的论文,不是通过3-D点云和图像点的匹配误差来估计标定参数,而是直接计算点云在图像平面形成的深度图,其和摄像头获取的图像存在全局匹配的测度。

不过这些方法,需要大量迭代,最好的做法是根据手眼标定产生初始值为好。

另外,密西根大学是采用了激光雷达反射值,悉尼大学在此基础上改进,两个都不如斯坦福大学方法方便,直接用点云和图像匹配实现标定。

斯坦福论文“Automatic Online Calibration of Cameras and Lasers”。

斯坦福的方法是在线修正标定的“漂移”,如下图所示:精确的标定应该使图中绿色点(深度不连续)和红色边缘(通过逆距离变换 IDT,即inverse distance transform)匹配。


标定的目标函数是这样定义的:


其中w 是视频窗大小,f 是帧#,(i, j) 是图像中的像素位置,而p是点云的3-D点。X表示激光雷达点云数据,D是图像做过IDT的结果。

下图是实时在线标定的结果例子:


第一行标定好的,第二行出现漂移,第三行重新标定。

密西根大学的论文“Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information”。

这里定义了标定的任务就是求解两个传感器之间的转换关系,如图:求解R,T。


定义的Mutual Information (MI) 目标函数是一个熵值:


求解的算法是梯度法:


下图是一个标定的例子:RGB像素和点云校准。


澳大利亚悉尼大学的论文“Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information”。

本文是对上面方法的改进。传感器配置如图:


标定的流程在下图给出:


其中定义了一个新测度Gradient Orientation Measure (GOM)如下:


实际上是图像和激光雷达点云的梯度相关测度。
点云数据和图像数据匹配时候需要将点云投影到柱面图像上,如图所示:


投影公式如下:


而点云的梯度计算之前需要将点云投影到球面上,公式如下:


最后,点云的梯度计算方法如下:


标定的任务就是求解GOM最大,而文中采用了蒙特卡洛方法,类似particle filter。
下图是一个结果作例子:


IMU—摄像头标定

德国Fraunhofer论文“INS-Camera Calibration without Ground Control Points“。

本文虽然是给无人机的标定,对车辆也适合。
这是IMU定义的East, North, Up (ENU) 坐标系:


而实际上IMU-摄像头标定和激光雷达-摄像头标定都是类似的,先解决一个手眼标定,然后优化结果。只是IMU没有反馈信息可用,只有姿态数据,所以就做pose graph optimization。下图是流程图:其中摄像头还是用SFM估计姿态。



这是使用的图像标定板:


激光雷达系统标定

牛津大学论文“Automatic self-calibration of a full field-of-view 3D n-laser scanner".

本文定义点云的“crispness” 作为质量测度,通过一个熵函数Rényi Quadratic Entropy (RQE)最小化作为在线标定激光雷达的优化目标。(注:其中作者还讨论了激光雷达的时钟偏差问题解决方案)

“crisp“其实是描述点云分布作为一个GMM(Gaussian Mixture Model)形式下的致密度。根据信息熵的定义,RQE被选择为测度:


下图是一个标定后采集的点云结果:


标定算法如下:


雷达—摄像头标定

西安交大论文“Integrating Millimeter Wave Radar with a Monocular Vision Sensor for On-Road Obstacle Detection Applications”。

在讲传感器融合的时候提过这部分工作,这里重点介绍标定部分。
首先坐标系关系如下:


传感器配置如下:


标定环境如下:


标定其实是计算图像平面和雷达反射面之间的homography矩阵参数,如下图:


来源: AUTO行家


   --END--

关注公众号,点击公众号主页右上角“ ··· ”,设置星标,实时关注智能汽车电子与软件最新资讯

智能汽车电子与软件 专注于汽车电子领域的信息交融平台,涵盖汽车电子行业资讯、市场动态、技术干货、知识见解、行业趋势等资讯深度覆盖。
评论
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 71浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 50浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 124浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 109浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 174浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦