特斯拉作为电动汽车行业的引领者,其热管理系统的设计一直都大胆且激进。从最早的Model S到Model Y,每一代热管理系统都是相关从业者竞相研究的对象。
Model Y上的热管理系统具有两个大的特点,其一为整个系统的集成化程度极高,采用了集成的歧管模块和集成的阀门模块。整个模块的核心是一个八通阀,可以把它看作是两个四通阀的集成。整个模块采用调节八通阀动作位置的方式,使冷却液在不同回路中进行热量交换,确保热泵的各项功能得以实现。第二点为取消了高压PTC,替换为两个乘员舱中的低压PTC。同时空调压缩机和鼓风机也存在一个低能效的制热模式,用来在环境温度低于- 10 ℃时作为整个系统热量补偿的来源,这保证了整个热泵系统在-30℃的环境下也能稳定可靠地运行。
Model Y的热泵模块包含了电动压缩机、电池冷却器、液冷冷凝器、气液分离器、电子膨胀阀、八通阀、部分空调管路、部分冷却液管路以及十数个冷媒、冷却液的接口。通过控制八通阀各个接口间的通断,Model Y整车热泵能实现11种不同类型的工况模式。整车热泵系统原理图如下图所示。
▲图 Model Y热管理系统原理图
Model Y热泵系统集成应用的策略与环境温度和电池温度有着直接的关系,系统会根据环境与电池包的 实时温度 ,来规划热泵系统参与加热的程度,以启动不同级别的加热模式。在满足乘员舱舒适性需求时,热泵会优先采用较高COP的模式运行,减少能源的消耗,提高续航里程。
总结起来,Model Y的热管理系统共有5种模式:单独乘员舱制热、乘员舱&电池都需要制热、乘员舱需要制热&电池需要冷却、乘员舱&电池都需要冷却、乘员舱余热回收。
1.单独乘员舱制热模式
Model Y的热泵将乘员舱需要加以环境温度- 10 ℃为界,在环境温度低于- 10 ℃时,热泵系统的制热能力受到很大的制约。在这种情况下,电池包本身的温度决定了热泵系统的运行模式。
若电池此时温度高于10 ℃,热泵系统能通过电池冷却器从电池、电机循环的耦合回路中吸收热量来给乘员舱加热。冷媒经过压缩机后,依次经过电磁截止阀1→乘员舱冷凝器→电子膨胀阀2→气液分离器,最终回到压缩机,完成一个对乘员舱的制热循环。冷却液经过电池冷却器与冷媒进行热交换后,依次经过八通阀水口8至2→电池包→八通阀水口1至3→电子水泵1→控制器及驱动单元→八通阀水口4至6→液冷冷凝器→膨胀水壶→八通阀水口5至7→电子水泵2,再流入电池冷却器。在这个过程中,为防止热量损失,室外的换热器部分是被八通阀屏蔽的。乘员舱同时接收到压缩机消耗的电功率和电池回路的热量,系统整体的COP远高于1。
若电池温度较低,无法给乘员舱提供热量,则乘员舱的制热主要依靠压缩机做功。在这种极端条件下,热泵系统无法通过外部散热器或是电池冷却器实现冷媒与冷却液的热量交换,电子膨胀阀2与电磁截止阀2均处于关闭状态。冷媒经压缩机做功后,经由电磁截止阀1→乘员舱冷凝器→电子膨胀阀1→乘员舱蒸发器→气液分离器后,直接回到压缩机。冷却液循环则与上述电池不提供热量时一致,但在电池冷却器处并不进行热量交换。
若环境温度高于- 10 ℃,则热泵系统优先从外部环境中吸收热量。系统中膨胀阀1关闭,冷媒通过电池冷却器吸收环境中的热量。通过改变对八通阀的控制,让冷却液依次经过八通阀水口8至6→液冷冷凝器→膨胀水壶→室外散热器→八通阀水口9至7→电子水泵2,再回到电池冷却器形成闭环。
上述三种情况,在环境温度较低时,热泵都会屏蔽室外散热器,不让其接入系统,是为了避免热量进一步释放到空气中,大大提高了系统内部热量的利用率;而在环境温度较高时,系统主动接入外部散热器,从外部环境吸收热量给车辆加热,可以充分提高系统的能效,实现能量的智能化与精细化控制。
2.乘员舱&电池同时加热模式
通常情况下,电池包的温度都会高于环境温度。当电池也需要加热时,通常已经是非常极端的情况,环境温度低于- 10 ℃,此时的热泵系统无法从外部环境获得热量。除了要保证乘员舱的舒适性外,还需要分出部分热量供给电池包,此时的热泵系统仍然完全依靠压缩机做功, COP=1。从原理图上看,冷媒经过压缩机后,在截止阀1、2处按比例(优先保障乘员舱制热需求)分成两路,一部分经过乘员舱冷凝器,另一部分经过液冷冷凝器,在电子膨胀阀1处汇合,再经由乘员舱蒸发器→气液分离器,返回压缩机。冷却液仍然在电池冷却器处与冷媒进行热交换,被冷媒加热后的冷却液会将热量传递到电池包处。
在一些特殊情况下,为了使电池快速升温(大电流充电,电池温度必须高于0 ℃),则要考虑牺牲乘员舱舒适性。此时热泵会控制截止阀1与电子膨胀阀1关闭,打开电子膨胀阀2,保持冷却液循环不变,开启快速加热电池包模式,这样能使电池包快速达到可以充电或大功率放电的状态。
3.乘员舱需要制热&电池需要冷却模式
这一模式通常出现在环境温度较低,车辆需要进行大功率充电时。车辆快充时间较短,乘员有很大可能性在车上等待充电,这个过程中乘员舱的制热功能需要得到一定的保证。这时的冷媒与上述任何情况的流向都有差别,经过压缩机做功之后的冷媒会分为两路,一部分经过乘员舱冷凝器,另一部分经过液冷冷凝器,后共同在电子膨胀阀2→电池冷却器处蒸发吸热,再经由气液分离器回到压缩机。
而冷却液循环也被八通阀分隔成了两部分,经过电池冷却器的部分被冷媒冷却后,依次经过八通阀水口8至2→电池包→八通阀水口1至7→电子水泵1,再流入电池冷却器形成闭环。经过液冷冷凝器的部分与电驱动、室外散热器串联,将多余的热量带到室外环境中。
特斯拉的这个设计,一方面乘员舱制热量过剩时,其中一部分可以被液冷冷凝器带到室外环境,这部分热量在水路循环中不会影响到电池包;另一方面,在乘员舱制热量不足时,截止阀2被关闭,冷媒的所有热量都会集中到乘员舱冷凝器,用来加热乘员舱。再者,若电池散热能力不足,还能通过八通阀让电池水循环先经过室外换热器,进一步降低循环水温。
4. 乘员舱&电池都需要冷却模式
这一情况即夏季正常的用车情况。此时的热泵系统即作为普通的空调系统使用,液冷冷凝器替代了传统的冷凝器进行工作,使空调系统正常运行。
5.余热回收模式
这一模式较为特殊,但这一模式的存在也正是热泵空调的优势以及控制智能化的体现。余热回收,顾名思义即将整车冗余部分的热量存储起来,以便下一次 用车时释放。电池包因为其对温度的敏感性,表面一般都会有较好的保温层,以维持电池的温度恒定在一定范围内,这一特性使得它很适合作为车辆余热回收的载体。冬季气温较低,当车辆停车、人员离开后,乘员舱或者电机内部还会有一定的热量,可通过热泵将其存储到电池包内。
这一工况下,乘员舱内部即为普通的制冷循环,冷媒和冷却液在液冷冷凝器中进行热交换。冷却液的循环在八通阀的控制下,是屏蔽室外散热器的,避免热量通过室外散热器耗散到外部环境中。
在下一次用车时,电池包的温度还能保持较高,热泵系统就能利用这部分热量给乘员舱进行加热。
总体而言,相比于国内各主机厂的热管理硬件系统,Model Y要简单得多,这都归功于其中核心的八通阀和复杂的软件控制,以实现以上五大场景、多达十几种功能的应用,而对驾驶员而言,只需要简单地设置空调温度,其控制策略、高度集成值得国内主机厂借鉴。
-end-
分享不易,恳请点个【👍】和【在看】