源码系列:基于FPGA的USB2.0设计

原创 FPGA技术江湖 2024-04-25 07:30

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。


今天给大侠带来基于FPGA的USB2.0设计,附源码,获取源码,请在“FPGA技术江湖”公众号内回复“ USB2.0设计源码”,可获取源码文件。话不多说,上货。

2019年9月4日,USB-IF终于正式公布USB 4规范。它引入了Intel此前捐献给USB推广组织的Thunderbolt雷电协议规范,双链路运行(Two-lane),传输带宽因此提升,与雷电3持平,都是40Gbps。需要注意的是,你想要体验最高传输速度,就必须使用经过认证的全新数据线。USB4保留了良好的兼容性,可向下兼容USB 3.2/3.1/3.0、雷电3。除此之外,USB4将只有USB Type-C一种接口,并支持多种数据、显示协议,包括DisplayPort,可以一起充分利用高速带宽,也支持USB PD供电。

比较遗憾的是,USB4的发布时间暂未公布。值得注意的是,此次发布的USB4是规范,而并非USB4.0。在此之前,USB Implementers Forum(USB-IF)计划取消USB 3.0/3.1命名,统一划归为USB 3.2。其中USB 3.0更名USB 3.2 Gen 1(5Gbps),USB 3.1更名USB 3.2 Gen 2(10Gbps),USB 3.2更名为USB 3.2 Gen 2x2(20Gbps)。

以上就是关于USB标准以及命名的讯息,而今天我们要做设计的是USB2.0,USB2.0的设备是按照2.0的电源标准设计的,设备所需的电流小于500mA,而USB3.0接口可以提供更大的电流,所以用在USB3.0接口是安全的,这就是标准向下兼容的道理。反之,USB3.0的设备,是否能够在USB2.0接口使用,就要查看设备的说明书。通常的电源都是电压源,设备与电源的电压必须相等,而电源的输出电流要大于设备的电流,即电源功率要大于设备功率。

现在大部分USB设备(比如USB接口的鼠标、键盘、闪存、U盘等等)都是采用了USB通用驱动,而你的系统有USB通用驱动的话(比如XP就内建了USB通用驱动)就能用。而有些USB设备是需要特殊驱动的,比如某些手机,连接到电脑的USB口,是需要安装驱动才能使用的。下面我们一起动手做一做,了解一下如何设计。


设计原理


USB(Universal Serial Bus2.0,通用串行总线)是一种应用在计算机领域的新型接口技术。USB接口具有传输速度更快,支持热插拔以及连接多个设备的特点。目前已经在各类外部设备中广泛的被采用。USB接口有三种:USB1.1,USB2.0和USB3.2。理论上USB1.1的传输速度可以达到12Mbps,而USB2.0则可以达到速度480Mbps,并且可以向下兼容USB1.1。

本次设计我们选择一款开发设备,一块廉价的开发板,其中的USB芯片是Cypress的FX2LP系列中的CY7C68013A代,详细的介绍大家可以去Cypress的官网查询。下面简述一下设计思路。

FX2的设计架构如下图,内嵌480MBit/s的收发器,锁相环PLL,串行接口引擎SIE——集成了整个USB 2.0协议的物理层。为适应USB 2.0的480MBit/s的速率,FIFO端点可配置成2,3,4个缓冲区。配置用的是“软配置”——USB固件可由USB总线下载,片上不需集成ROM。拥有四个FIFO接口,可工作在内部或外部时钟下。端点和FIFO接口的应用使外部逻辑和USB总线可高速连接。


基于FX2LP的USB开发,包括三部分:固件程序、驱动、上位机软件。
固件程序我们在kiil中写出来,然后配置到我们的芯片中,固件的开发对于FPGA工程师来说是不用写的,是其他工程师配置好芯片后我们直接拿来使用,其主要的配置过程如下图。


先上电复位,然后初始化寄存器变量,然后调用配置函数,打开中断后,判断是否接受到了配置包,如果接收到了就调用TD_POLL()函数,这个是函数是不停的执行扫描端点等。然后判断芯片是否挂起,如果挂起就叫醒芯片,如果没有就一直调用TD_POLL函数,这样就完成所需要的配置。

这里的项目设计要求是要把FX2配置成从FIFO的模式, 配置为单片机工作时钟24M,端点2输出,字节1024,端点6输入,字节1024,信号全设置为低电平有效等。模块驱动时钟配置成内部输出时钟,也就是让FX2给项目设计当作时钟源,输出一个最大的配置时钟48M的时钟。FX2的数据存储区叫端点,有512、1024字节两个存储大小之分。


从FIFO说明


当有一个与FX2芯片相连的外部逻辑只需要利用FX2做为一个USB 2.0接口而实现与主机的高速通讯,而它本身又能够提供满足Slave FIFO要求的传输时序,可以做为Slave FIFO主控制器时,即可考虑用此传输方式。 

Slave FIFO传输的示意图如下: 


在这种方式下,FX2内嵌的8051固件的功能只是配置Slave FIFO相关的寄存器以及控制FX2何时工作在Slave FIFO模式下。一旦8051固件将相关的寄存器配置完毕,且使自身工作在Slave FIFO模式下后,外部逻辑(如FPGA)即可按照Slave FIFO的传输时序,高速与主机进行通讯,而在通讯过程中不需要8051固件的参与。

FX2系列的有3种封装方式,我们我的开发板用的是56引脚的封装方式的电路图,其电路图如下所示:


端口介绍


IFCLK:FX2输出的时钟,可做为通讯的同步时钟

SLCS:FIFO的片选信号,外部逻辑控制,当SLCS输出高时,不可进行数据传输

SLOE:FIFO输出使能,外部逻辑控制,当SLOE无效时,数据线不输出有效数据

SLRD:FIFO读信号,外部逻辑控制,同步读时,FIFO指针在SLRD有效时的每个IFCLK的上升沿递增。

 SLWR:FIFO写信号,外部逻辑控制,同步写时,在SLWR有效时的每个IFCLK的上升沿时数据被写入,FIFO指针递增

FD[15:0]:数据线

FIFOADR[1:0]:选择四个FIFO端点的地址线,外部逻辑控制。

FLAG A,B,C端点的空满标志位

开发驱动大家可以在网上找,然后根据自己系统装上合适的驱动。上位机软件用的是官方的开发工具,只有如下的安装包,然后安装第一个和第二个就好了。


设计代码


总模块usb:

module  usb(pi_clk, clk, pi_rst_n, pi_usb_flagb, pi_usb_flagc, pio_usb_data,   po_usb_oe_n, po_usb_wr_n, po_usb_address, po_usb_rd_n, led);
input clk; input pi_clk; input pi_rst_n; input pi_usb_flagb; input pi_usb_flagc; inout [15:0] pio_usb_data;
output po_usb_oe_n; output po_usb_wr_n; output po_usb_rd_n; output [1:0] po_usb_address; output led; wire po_rst_n;
delay delay_dut( .pi_clk(pi_clk), .pi_rst_n(pi_rst_n), .po_rst_n(po_rst_n) );
usb_wr wr_dut( .pi_clk(pi_clk), .pi_rst_n(po_rst_n), .pi_usb_flagb(pi_usb_flagb), .pi_usb_flagc(pi_usb_flagc), .pio_usb_data(pio_usb_data), .po_usb_oe_n(po_usb_oe_n), .po_usb_wr_n(po_usb_wr_n), .po_usb_address(po_usb_address), .po_usb_rd_n(po_usb_rd_n) );
my_pll my_pll_inst ( .areset ( ~ pi_rst_n ), .inclk0 ( clk ), .c0 ( c0_sig ), .locked ( locked_sig ) );  endmodule


读模块usb_rd:

module usb_rd(pi_clk, pi_rst_n, pi_usb_flagb, pi_usb_flagc, pio_usb_data,   po_usb_oe_n, po_usb_rd_n, po_usb_address, po_usb_wr_n, led);
input pi_clk; input pi_rst_n; input pi_usb_flagb; //端点2标志信号 input pi_usb_flagc; //端点6标志信号 inout [15:0] pio_usb_data; //输入输出端口
output reg po_usb_oe_n; //读标志信号 output reg po_usb_rd_n; //写使能 output reg po_usb_wr_n; //读使能 output reg [1:0] po_usb_address; //端点地址选择 output reg led;
reg [15:0] temp_data; reg [9:0] count; reg [2:0] state;
assign pio_usb_data = (state == 10) ? 1 : 16'hzzzz; //读数据,可以一直释放数据总线的控制权
always @ (posedge pi_clk or negedge pi_rst_n) if(!pi_rst_n) begin state <= 0; po_usb_oe_n <= 1; po_usb_rd_n <= 1; count <= 0; po_usb_wr_n <= 1; temp_data <= 0; end else case (state) 0 : state <= 1;
1 : begin po_usb_address <= 2'b00; //地址指向端点2 state <= 2; end
2 : if(!pi_usb_flagb) //判断端点2已经满 begin po_usb_rd_n <= 0; state <= 3; po_usb_oe_n <= 0; end else state <= 2;
3 : begin if(count < 512 - 1) //接收1024字节的数据 begin count <= count + 1'b1; end else begin count <= 0; state <= 4; end if (count == 2) begin temp_data <= pio_usb_data; end end
4 : begin po_usb_rd_n <= 1; po_usb_oe_n <= 1; state <= 0; end
default: state <= 0; endcase
always @ (*) if(!pi_rst_n) led <= 1; else if (temp_data == 16'h33ff) led <= 0;
endmodule


写模块 usb_wr:

module usb_wr(pi_clk, pi_rst_n, pi_usb_flagb, pi_usb_flagc, pio_usb_data,   po_usb_oe_n, po_usb_wr_n, po_usb_address, po_usb_rd_n);
input pi_clk; input pi_rst_n; input pi_usb_flagb; //端点2标志信号 input pi_usb_flagc; //端点6标志信号 inout [15:0] pio_usb_data; //输入输出端口
output reg po_usb_oe_n; //读标志信号 output reg po_usb_wr_n; //写使能 output reg po_usb_rd_n; //读使能 output reg [1:0] po_usb_address; //端点地址选择
reg [15:0] temp_data; reg [2:0] state;
//在状态的3,拿回数据总线控制全,给写入数据 assign pio_usb_data = (state == 3) ? temp_data : 16'hzzzz;
always @ (posedge pi_clk or negedge pi_rst_n) if(!pi_rst_n) begin state <= 0; po_usb_oe_n <= 1; po_usb_wr_n <= 1; temp_data <= 0; po_usb_rd_n <= 1; end else case (state) 0 : state <= 1;
1 : begin po_usb_address <= 2'b10; //地址指向端点6 state <= 2; end
2 : if(!pi_usb_flagc) //判断端点6已经空 begin po_usb_wr_n <= 0; state <= 3; end else state <= 2;
3 : if(temp_data < 512 - 1) //发送1024字节的数据 temp_data <= temp_data + 1'b1; else begin temp_data <= 0; state <= 4; end
4 : begin po_usb_wr_n <= 1; state <= 0; end
default: state <= 0; endcase
endmodule


延时模块 delay

module delay(pi_clk, pi_rst_n, po_rst_n);
input pi_clk; input pi_rst_n;
output reg po_rst_n;
parameter T1ms = 50000; reg [15:0] count;
always @ (posedge pi_clk or negedge pi_rst_n) if(!pi_rst_n) begin count <= 0; po_rst_n <= 0; end else begin if(count < T1ms - 1) count <= count + 1; else begin count <= count; po_rst_n <= 1; end end
endmodule


上位机测试



安装好驱动和下载的上位机软件,然后在下面的界面中,点击”LGEEPROM”按钮,下载我们写好的的.IIC固件。


然后在下面的页面中会出现先选择other endpt xfers选项中会出现4个端点,然后选择写入的端点或者读的端点执行读写操作。


写的端点是6端点,选择这个端点,写入端点是1024个字节,这里设置的是512字节,也就是写入2次就可以写满了,如下图,和我们编写的代码中写入数据值是一样的。



读操作也就是要读端点2,我们先要给端点一个数,然后才能读我们的端点,我们写入图中显示的数,因为我们设计的是读出的数,如果第三个数位33ff ,就让我们的灯亮,值得一说的是,我们上位机显示的时候是把低位显示到了前面,高位显示到了后面,我们一个包是1024字节,后面的数自动补零,读出数据后可以看到我们的led灯亮,验证出我们的设计正确。


以上就是我们的基于FPGA的usb2.0设计了,希望能给各位大侠起到参考学习作用,此次设计到此结束,有缘再见,告辞。

- THE END -

🍁


往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2024.01.06更新)

FPGA就业班,05.04开班,新增课程内容不加价,高薪就业,线上线下同步!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+学校/公司+专业/岗位进群


FPGA技术江湖QQ交流群

备注姓名+学校/公司+专业/岗位进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 55浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 174浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 124浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦