企业内训中,高速PCB信号仿真实训为何至关重要?

凡亿PCB 2024-04-24 19:40

《企业内训—高速PCB信号仿真实训课程大纲》


01

培训背景

随着系统时钟频率和信号边沿的不断变陡,信号完整性成为贯穿于高速数字电路设计中最重要的问题之一,了解信号完整性理论,进而指导和验证印刷电路板(PCB)的设计是一件刻不容缓的事情。在大中规模电子系统的设计中,系统地综合运用信号完整性技术可以带来很多好处,如缩短研发周期,降低产品成本,降低研发成本,提高产品性能,提高产品可靠性等。信号完整性主要就是指电路系统中信号的质量。引起信号完整性问题的原因比较复杂,元器件的参数、PCB的参数、元器件在PCB上的布局、高速信号的布线等都是影响信号完整性的重要因素。信号完整性问题主要表现为:延迟、反射、过冲、振铃、串扰、时序、同步切换噪声、EMI等。


02

课程特色

专业电子设计公司一线设计工程师课程讲授,包含了讲师丰富实际经验及使用技巧,课程选取了电子产品设计中常用的信号仿真链路分析流程进行了有针对性的讲解,课程的实例选取紧贴当前市场主流的设计。课程讲解规范,所有的关键知识点李老师均打字在屏幕上通过红色字体和关键图表进行讲解,进一步加深课程学习理解,力争一次听懂学会

课程所涉及到所有实例文件,包括拓扑相关配套文件均100%提供,所涉及到的PCB原始文件,配套原理图文件,元件手册文件,SPD转换文件,仿真配置文件,S参数文件,分析后的仿真报告文件及相关其他的规范文件等均好不保留的全部提供。目的是方便工程师可以对照视频进行操作练习规范学习。


03

授课对象

硬件设计工程师、PCB设计工程师、PCB仿真工程师、PCB项目经理、技术支持工程师,项目管理人员


04

课程大纲


    

第一次课程

课程主题

S参数的详解和S参数的应用;

S参数提取实例例应用分析(PCB板级互联仿真分析)(基于Sigrity Power SI软件下的S数的实例应用分析)

【1】S参数的含义与集总参数表示的电路模型构建办法;

【2】S参数的分析,分解,合并,NEXT,FEXT,等效模型;

【3】S参数的模型应用与等效电路模型转换办法;

【4】S参数的网络模型图分析与S参数关联参数提取;

【5】S参数的经验标准与常见的行业S参数要求;

S参数的详解和S参数的应用互联分析(实例分析)

【1】实例PCB文件导入和材料的参数带入及配置材料表等参数设置;

【2】互联网络连通性检查&信号互联的过孔&焊盘&铜皮等参数配置;

【3】添加互联端口执行电源类仿真参数设置&提取S参数进行分析;

【4】添加互联端口执行信号类仿真参数设置&提取S参数进行分析;

【5】S参数仿真结果数据解读和报告文件解读分析;

【6】实例文件的优化和S参数的分析中遇到问题的优化;

【7】传输线LRC的等效模型提取和等效的参数解读;

    

第二次课程

课程主题

三维全波场FEM参数分析和互联应用分析(实例分析)







全波场FEM电磁场分析(PCB板级互联仿真分析)(PCB板级互联仿真分析)(基于Sigrity Power SI软件下的全波场FEM分析)

【1】电磁感应的产生原理,磁场的场特征;

【2】 2.5D XYZ三轴磁场,XYZ方向电场E和XYZ方磁场H磁场方向;

【3】三维静态磁场,芯片-封装-电路板系统中出现大多数3D结构;

【4】FDTD全波电磁模拟算法,麦克斯韦方程式来求解;

【5】实例PCB文件导入和材料的参数带入及配置材料表等参数设置;

【6】设置电路模型与电路切割,执行区域仿真切割;

【7】设置电路的PORT端口,设置返回路径和正负端口;

【8】设置BOX的区域切割的范围,仿真的MESH参数;

【9】设置S参数的提取分辨率,点数,阻抗的参数;

【10】执行结果分析&无源与有源信号端口链路的处理方法;

参数结果分析和解读与改善

【1】全波场S参数分析与解读,S11,S21,S31,S41;

【2】电源&GND输入阻抗和传输阻抗分析;

【3】电源平面谐振分析,目标阻抗计算与标线检查;

【4】PDN平面改善策略与优化传输链路阻抗分析;

【5】近场辐射场参数解读分析,场强与功率场分布;

【6】远场FCC标准,水平与垂直磁场结果分解与分析;

【7】远近磁场辐射参数切换,场标准解读,辐射场范围;

【8】远场和近场的区分,传输线辐射场的范围计算;

【9】二值化磁场结果分布图和结果;最差结果标准;

【10】近场三维场参数解读,场强功率分布于频率切换下的场参数;

【11】高频和低频下的三维场辐射强度分布,谐振点查找;

    

第三次课程

课程主题

IBIS模型建模相关知识和问题;

IBIS模型建模相关知识和问题处理办法(PCB板级互联仿真分析)(基于Sigrity Speed2000软件下的信号质量评估)

【1】IBIS元件模型相关知识&IO模型&IBIS文件的框架结构;

【2】输入模型&输出的模型&IO缓存器模型的模型数据分析;

【3】缓冲器模型部分分析&接收器的阈值&温度和电压&)I/V曲线;

【4】缓冲器特性电压时间的速度& IBIS模型的获取方法;

【5】IBIS文件中常见的语法错误检查办法&常见的错误修改技巧;

【6】IBIS文件里面电源和GND部分描述模型省略的补救措施修改技巧;

【7】IBIS文件的获取途径途径和方法;

【8】XtractIM抽取Spice-T模型和Spice-Pi模型及IBIS.pkg方法;

【9】IBIS模型和Spice模型的转换;

【10】IBIS下的IO表征和描述行为建模方法;

    

第四次课程

课程主题

通用时域信号互联仿真分析(实例仿真)

通用信号实例仿真分析(PCB板级互联仿真分析)(基于Sigrity Speed2000软件下的信号质量评估)

【1】实例PCB文件导入和材料的参数带入及配置材料表等参数设置;

【2】互联网络连通性检查&信号互联的过孔&焊盘&铜皮等参数配置;

【3】IBIS文件错误检查&错误修改和IO缓冲器的特性检查配置;

【4】DIE和封装Package IBIS文件关联编辑生成新的关联IBIS文件;

【5】设置仿真的网络和区域&进行关键网络的链路分析和阻抗检查;

【6】设置分析网络的关联信号的GND和VCC分组&关键信号进行分类;

【7】关联分析信号元件的IBIS模型&创建多信号分组&信号关联检查;

【8】编写信号激励源的函数&设置激励源&关联信号激励TX发送;

【9】设置信号流向关联RX接收&设置对用网络的IO模型关联模型;

【10】设置仿真参数包括Level两个等级&设置参与仿真的信号网络类;

【11】执行仿真分析仿真结果&建立信号分析模板对结果提出改进;

    

第五次课程

课程主题

DDR3内存信号时序标准和相关信号评定指标;

内存DDR3专题时域信号仿真分析(PCB板级互联仿真分析)(基于Sigrity Speed2000软件下的信号质量评估)

【1】DDR3芯片常见的BGA类内存封装选择策略;

【2】DDR3 内存中常见的信号分类和信号的各自定义与特征详解;

【3】DDR3 地址组&控制组&时钟组&命令组&数据组信号分类和特征;

【4】DDR3 输入信号VIHAC,VIHDC,VILAC,VILDC,VREF的判断标准幅度;

【5】DDR3 单线信号过冲&下冲的最大区域范围和信号的速率及影响;

【6】DDR3 差分线CLK,DQS信号最大和最小的设置范围区间;

【7】TIS,TIH,TDS,TDH,TVAC,AC175,DC100,AC150,AC135等的时序;

【8】建立时间和保持是关系,信号建立时间和保持时间的关联因素;

【9】信号眼图模板的制作眼图的眼宽&眼高的计算;

【10】理想和非理想下眼图判断依据标准;

DDR3内存信号分析(实例分析)

【1】DDR3实例文件导入和材料的参数带入及配置材料表等参数设置;

【2】DDR3网络连通性检查&信号互联的过孔&焊盘&铜皮等参数配置;

【3】DDR3 IBIS文件错误检查&修改和IO缓冲器的特性检查配置;

【4】DDR3仿真的网络和区域&进行关键网络的链路分析和阻抗检查;

【5】DDR3网络的关联信号的GND和VCC分组&关键信号进行分类;

【6】DDR3关联信号元件的IBIS模型&创建多信号分组&关联检查;

【7】设置仿真条件和仿真的参数等级&设置参与仿真的信号网络类;

【8】设置参与仿真的信号组类型,地址,命令,控制,数据,时钟;

【9】执行仿真查看仿真结果&套用内存时序分析模板对结果进行分析;

    

第六次课程

课程主题

DDR3内存信号实例分析结果分析和报告输出;

DDR3内存信号实例分析结果分析;

(基于Sigrity Speed2000软件下的信号质量评估)

【1】CK+,CK-接收数据整理参考内置DDR3模板标准做数据对比解析;

【2】DQS+,DQS-接收数据整理参考内置DDR3模板标准做数据对比解析;

【3】地址组分析结果整理和考内置DDR3模板标准做数据对比解析;

【4】数据组分析结果整理和考内置DDR3模板标准做数据对比解析;

【5】过冲&下冲&信号抖动&眼图模板&定义模板数据比较和初判断;

【6】基于预定义的DDR3内存模板文件输出仿真报告;

【7】输出的报告文件进行解读分析&分析建立时间和保持时间的余量;

【8】对输出的报告文件中的最佳建立时间报告进行分析;

【9】对输出的报告文件中的最佳保持时间报告进行分析;

【10】对输出的报告文件中的最佳眼图眼高报告进行分析;

【11】对仿真中存在的不合格项目进行优化冗余分析;

【12】提出改善DDR3的优化策略和多参数分析优化思路;

    

第七次课程

课程主题

板级EMI辐射仿真实例分析(实例分析)

板级EMI仿真实例分析(基于Sigrity Speed2000软件下的板级EMI分析)

【1】实例文件导入和材料的参数带入及配置材料表等参数设置;

【2】互联网络连通性检查&信号互联的过孔&焊盘&铜皮等参数配置;

【3】IBIS文件错误检查&错误修改和IO缓冲器的特性检查配置;

【4】设置仿真的网络和区域&进行关键网络的链路分析和阻抗检查;

【5】设置分析网络的关联信号的GND和VCC分组&关键信号进行分类;

【6】关联分析信号元件的IBIS模型&创建多信号分组&信号关联检查;

【7】编写信号激励源的函数&设置激励源&关联信号激励TX发送;

【8】设置信号流向关联RX接收&设置对用网络的IO模型关联模型;

【9】执行仿真分析仿真结果&近场辐射场参数解读分析;

【10】远场FCC标准,水平与垂直磁场结果分解与分析;

【11】远近磁场辐射参数切换,场标准解读,辐射场范围;

【12】远场和近场的区分,传输线辐射场的范围计算;

【13】二值化磁场结果分布图和结果;最差结果标准;

【14】近场三维场参数解读&空间辐射源查找与信号辐射优化策略;

    

第八次课程

课程主题

10G封装体全波场高速串行信号仿真实例;

10G封装体全波场高速串行信号仿真实例;

(基于Sigrity SYSTEM SI高速互联模块的实例分析)

【1】封装体全波场S参数提取&3DFEM全波场S参数提取;

【2】10G S参数结果分析和S11,S21信号质量评估;

【3】BNP&TS文件转换和SPICE等效模型转换与分析;

【4】SYSTEM SI 系统仿真链路搭建与模型关联;

【5】IBIS-AMI信号激励码的设置与模型匹配;

【6】信号仿真执行和注意事项和常见问题;

【7】结果分析和解读,10G 69A-7标准规范&信号抖动公差;;

【8】结果分析和解读,差分对TX/RX信号误差对比分析;

【9】结果分析和解读,S21信号插入损耗分析&拟合衰减&插入损耗;

【10】结果分析和解读,S11,S22回损分析,TX S11&RX S22;

【11】结果分析和解读,TP1和TP4之间的串扰DB;

【12】信号分析结果优化与信号质量改进方法;

    

第九次课程

课程主题

PCB互联电和热混合仿真的效应基础

PCB直流压降与电热混合仿真;

(基于Sigrity PowerDC软件下的电热混合仿真)

【1】欧姆定律与电路的电阻计算方式;

【2】直流电路的压降分析与电路的回路系统;

【3】封装堆叠与封装结构体中的电压回路系统;

【4】电源树和导入电源树后的BLOCK分布编辑设置;

【5】导入回路与常见的热通路热阻模型;

【6】热流密度与电热的相互效应参数;

【7】铜皮,金,银,钨等金属材料的电和热参数;

【8】通用的热与散热处理方法,热通路和电通路;

课程主题

PCB(单或者多板)互联电源系统DC电参数分析;(实例仿真分析)

PCB直流压降与电热混合仿真;

(基于Sigrity PowerDC软件下的电热混合仿真)


【1】建立项目载入文件,封装参数SPD;

【2】叠层设置,材料的电参数设置,过孔参数设置;

【3】封装体预览与三维结构体分析;

【4】设置电源和GND,网络归类;

【5】设置VRM电压源&设置Sinks负载,设置输入和内阻模型;

【6】使用Power Tree建立参数模型和构建互联的DC模型;

【7】设置规则,电参数设置,层,过孔,电路密度参数;

【8】仿真和分析结果,解读仿真结果。

【9】电路&电流热点超标点查找,与改进方式;

【10】VCC&GND 3D电路电流密度分析,动态热点分析;

【11】改善策略与分析&多参数扫描分析;

PCB(单或者多板)互联电源系统电热混合参数分析;(实例仿真分析)

【1】建立项目载入文件,封装参数SPD;

【2】叠层设置,材料的电参数设置,过孔&热参数参数设置;

【3】封装体预览与三维结构体分析;

【4】设置电源和GND,网络归类;

【5】设置VRM电压源&设置Sinks负载,设置输入和内阻模型

【6】使用Power Tree建立参数模型和构建互联的DC模型;

【7】设置规则,电参数设置,层,过孔,电路密度参数;

【8】设置仿真环境温度,风扇,风速,热环境;

【9】 设置热元件参数,MCU,MPU,电源等大电流器件的热阻模型;

【10】散热片设置,元件模型散热片与安装位置设置,导热设置;

【11】设置热分析标准,建立热分析规则;

【12】仿真和分析结果,解读仿真结果。

电热混合参数扫描结果分析

【1】电路&电流热点超标点查找与系统与改进的方法;

【2】VCC&GND 3D电路电流密度分析,动态热点分析;

【3】3D热温度分布分析,热导图分析;

【4】热辐射对元件的MTBF寿命参数与寿命分析;

【5】改善策略与在分析&多参数扫描分析;

【6】整理资料输出电热混合仿真报告,给出整改建议;

【7】分析电密度超标区域&分析热密度超标区域&提出改善措施;


05

优质售后服务,提升培训效果

参训学员或者企业在课程结束后,可以享受相关凡亿教育技术的方面的优质售后服务,作为授课之补充,保证效果,达到学习目的。

1、【技术问题解答】培训后一年内,如果有课程相关技术问题,可通过电话、邮件、微信联系凡亿技术客服,我们将第一时间协助解决。

2、【技术交流群】加入正式技术交流群,与行业大咖零距离沟通。

3、【技术支持】在企业培训过程中,有不懂的问题可以随时向技术支持提出,及时提出与解决,最大化提升学习效率。

4、【专属客服】专属客服保障,服务永不止步,实时跟踪学习动态,保证学习效率

5、【技术论坛】PCB联盟网,国内领先的PCB论坛之一,以技术交流为主,汇集电子行业各类大咖。在PCB联盟网内可以了解到行业最新进展,学习最前沿的技术。

6、【凡亿课堂】电子行业专业在线教育平台,覆盖多种电子培训类目,在培训之余可以通过凡亿课堂随时在线学习,满足学习需求。


06

讲师资历—李增老师

李增老师,13年+模拟电路和数字电路及程序设计经验,著有多本Cadence和高速信号仿真书籍。尤其是快速电子类产品开发的精悍流程和开发技巧。熟悉Cadence,PADS,AD, ADS,Sigrity,Ansys EM等EDA和分析工具,已初步形成了一套基于高速PCB设计的实践经验及理论,累积上万粉丝。


07

主办单位简介

湖南凡亿智邦电子科技有限公司,是国内领先的电子研发和技术培训提供商,是国家认定的高新技术企业。以“凡亿电路”“凡亿教育”作为双品牌战略,目前近110万电子会员,技术储备为社会持续输送7万余人高级工程师,服务了1万多中小型企业合作伙伴。

服务范围:

凡亿教育课程开设了硬件、PCB、仿真、电源、EMC、FPGA、电机、嵌入式、单片机、物联网、人工智能等多门主流学科。目前,凡亿教育毕业学员九成实现涨薪,八成涨薪超20%,最高涨幅达200%,就业企业不乏航天通信、同步电子、视源股份,华为等明星企业,受到企业与工程师一致认可!

培训初心:

打通“人才培养+人才输送”的闭环;致力于做电子工程师的梦工厂;

打造“真正有就业保障的电子工程师职业教育平台”。

培训特色:

类目全面,授课形式多样,针对性强

1)课程形式多样,涵盖线上/线上,导师1带1,班级式培训等多种形式

2)开设硬件、PCB、仿真、电源、EMC、FPGA、电机、嵌入式、单片机、物联网、人工智能等多门主流学科

3)工业和信息化部教育与考试中心专项技术证书,官方发证,行业通用

专业技术保障,一线工程师团队,售后有保障

1)培训电子工程师团队工龄经验均为10年+,具备丰富的实战能力

2)毕业学员九成实现涨薪,八成涨薪超20%,最高涨幅达200%

3)凡亿PCB联盟网、人才网、凡亿教育课堂“三位一体”覆盖多种学习交流场景

企业级素养培养,“对症下药”解决企业项目难点痛点

1)全行业实战课程教学团队,涵盖硬件电子、软件编程、企业培训三个核心领域

2)专业级工程师设计团队,基于一线导师的实际工作经验为标准制定课程规划

3)芯片公司合作,前瞻性技术积累,秉承凡亿教育13年教学经验与教学优势



《凡亿高速PCB信号仿真实训课程》  报名表

此表所填信息仅用于招生工作,请填写回传给我们,以便及时为您安排培训,谢谢支持!

客服热线:0731-83882355

凡亿PCB 分享高速PCB设计、硬件设计、信号仿真、天线射频技术,提供技术交流、资料下载、综合提升电子应用开发能力!创立“凡亿教育”,致力做电子工程师的梦工厂,旨在赋能大学生、初中级电子工程师,倾力打造电子设计精品教育,逐步发展成系统
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 144浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 126浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 167浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 96浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦