DPWM原理及其仿真分析

原创 英飞凌工业半导体 2024-04-23 17:01

本文支持

快捷转载



随着功率半导体技术的发展,三电平拓扑广泛应用在光伏逆变器,储能PCS和UPS等各种系统中。在设计中,追求的重要目标是功率密度和性价比,充分挖掘逆变器的潜力,在不提升成本的同时增加IGBT模块的输出电流能力,同时提高整机效率。


本文以英飞凌的Easy4B模块应用为例,引入DPWM(Discontinue Pulse Width Modulation)调制方式,这就可以在不增加成本的基础上,提高模块的输出电流能力,实现最高350kW(320kW*110%长期过载)的高效光伏逆变器设计。


DPWM调制方式的原理是通过减少开关次数来显著降低变流器的开关损耗。本文将对比介绍CPWM(Continue Pulse Width Modulation)和DPWM的基本原理,比较不同的DPWM类型,仿真给出了SVPWM和DPWM调制方法下,ANPC模块在320kW组串式光伏逆变器中的的损耗和温升。


CPWM简介


在光伏逆变器领域中,CPWM仍然占据主导地位。常见的CPWM包括SPWM、三次谐波注入PWM,SVPWM等,这些调制算法的特征是每相调制波形连续,功率半导体器件在每一个开关周期中都要开关一次。目前在三相逆变器中应用最广泛的是SVPWM,其是基于计算的调制算法,具有成熟度高、数字化容易、直流母线利用率高、输出THD低的优点。不同CPWM的调制波形如图1所示。


(a)

(b)

(c)


图1. (a)SPWM,(b)三次谐波注入PWM,(c)SVPWM


DPWM简介


DPWM的优势在于其可以通过减少开关次数显著降低功率半导体器件的开关损耗。与CPWM不同,DPWM的每一相的调制波会在三分之一个工频周期内被钳位到0或者1,由此可以减少三分之一的开关动作,进而降低开关损耗。这也是其被称为“不连续”的原因。


如图2和图3(a)所示,在传统的SVPWM中,每个开关周期会使用两个零向量U0(000)和U7(111),其会占据开关周期的中间和两端的时刻。每个开关周期中有七段向量组合,由此又称七段式PWM。而DPWM在每个开关周期中只使用一种零向量,从而每个开关周期中有一相的开关管可以不动作,如图3(b)所示。每个周期中只有五段向量组合,由此又称五段式PWM。


图2

图3. (a)SVPWM开关顺序、(b)DPWM开关顺序


根据使用的零向量及其使用的时机不同,DPWM可以被分为六种:DPWM0、DPWM1、DPWM2、DPWM3、DPWMMAX、DPWMMIN。由图4可见,不同DPWM的钳位时刻不一样,如果根据实际功率因数选择合适的DPWM方式,使得电流最大的时候功率半导体器件被钳位,那就可以最大程度的降低开关损耗。比如光伏逆变器的功率因数典型值为1,电压与电流同相位,那么采用图4(b)所示的DPWM1的调制算法就可以实现最低的损耗。


(a)

(b)

(c)

(d)

(e)

(f)


图4. (a)DPWM0、(b)DPWM1、(c)DPWM2、(d)DPWM3、(e)DPWMMAX、(f)DPWMMIN


仿真分析


接下来以320kW ANPC拓扑的组串式光伏逆变器为背景,对比不同调制算法的效率和温升。仿真工况如表一所示


表一. 320kW组串式光伏逆变器典型工况


设计使用英飞凌针对300kW+光伏组串逆变器开发的ANPC模块,型号为F3L600R10W4S7F_C22,封装为Easy 4B,其IGBT芯片使用了英飞凌最新的IGBT7技术,并在D5/D6使用了SiC二极管来提高效率。其拓扑结构如图5所示。IGBT模块的PLECS仿真模型为英飞凌官网下载。


图5. 英飞凌F3L600R10W4S7F_C22模块拓扑示意图


调制方式选择为ANPC-1即T2/T3工频动作,T1/T2/T5/T6高频动作,全短换流路径。将仿真工况结合仿真模型并在PLECS平台上进行仿真,换用不同的调制策略并记录每个芯片的损耗如图6所示,芯片结温及整机效率如图7所示。


图6. 不同调制方式的损耗仿真结果


图7. 不同调制方式的效率与外管T1温度仿真结果


当功率因数PF接近于1时,T1/D5/T4/D6同时产生导通损耗和开关损耗,而T2/T3由于开关频率为工频,近似认为只有导通损耗。两种CPWM方法(三次谐波注入PWM和SVPWM)的损耗几乎相同并且最高约等于820W。而各种DPWM的开关损耗显著降低,其中DPWM1的损耗最低,仅为715W,比CPWM降低了约12.8%。这是因为其保证了最大电流流过开关管时无开关动作。受此影响,对应的最高结温Tvj1也由CPWM的141°C降低到DPWM1的128°C。DPWM0和DPWM2具有相同的功率损耗,因为它们的钳位区间相对于PF≈1工况的相移相反且移动程度相同,它们最适用于需要少量无功的工况。


总结



DPWM使得每相有三分之一个工频周期开关管不动作,进而降低开关损耗。

不同DPWM的区别表现为钳位区间的分布不同。

DPWM1适用于光伏逆变器,因其钳位区处于负载电流最大的区域

如果存在部分容性或感性无功功率需求,DPWM0或DPWM2是更好的选择。


参考阅读


三电平电路原理及常见的电路拓扑分析(这个入门其实就很不错)

I-NPC三电平电路的双脉冲及短路测试方法

T-NPC三电平电路的双脉冲与短路测试

NPC2三电平拓扑横管过压保护开关逻辑


扫描上方二维码

欢迎关注微信公众号

【英飞凌工业半导体】

英飞凌工业半导体 英飞凌工业半导体同名公众号是英飞凌功率半导体产品技术和应用技术的交流平台和值得收藏的资料库。提供新产品介绍,应用知识和经验分享,IGBT在线课程,线上线下研讨会发布和回放。 欢迎来稿:IPCWechat@infineon.com。
评论 (0)
  • 在现代电子行业,PCB(印刷电路板)的质量直接影响到产品的稳定性与性能。作为全球领先的PCB制造商,捷多邦始终将质量放在第一位,致力于为客户提供高可靠性、高精度的PCB产品。为了确保每一块成品PCB都符合最高的质量标准,捷多邦在从设计到生产的每个环节都严格把控,确保质量无可挑剔。1. 精准设计:从需求到规格PCB的质量首先体现在设计阶段。捷多邦的设计团队根据客户需求,使用最新的EDA软件进行电路板布局设计。通过设计规则检查(DRC),确保电路板设计满足行业标准和客户的特殊需求。无论是单面板、双面
    捷多邦 2025-03-19 10:09 63浏览
  • 贞光科技作为三星电机MLCC的授权代理商,专注于电子元器件领域,代理产品包括车规电容MLCC和电感等。 现代汽车音视频导航(AVN)系统正迅速发展,集成了导航、多媒体和通信等功能。显示技术的进步和连接性的增强,提升了驾驶体验。在这些系统中,MLCC作为关键元件,确保了高性能IC的稳定供电,发挥着电源稳定、噪声抑制和小型化等重要作用。三星电机提供高可靠性、小型化、高容量的MLCC产品,专为汽车AVN应用设计,满足行业严苛要求。现代驾驶体验正在迅速转型,它不再仅仅是交通工具,而是变成了一个互联、沉浸
    贞光科技 2025-03-18 16:54 30浏览
  • 这是一个很有意思的话题,在职场人士之间争论不休。证书到底有没有用?有人支持,也有人反对。不过,在正式聊这个话题之前,我想先分享一个我亲身经历的真实故事。那时,我和同学们正在读管理学的研究生课程。有一次,我们的教授要求大家穿正装上课。这时,有个同学问了个很有趣的问题:“教授,某某的董事长可以穿得五颜六色,我们这些职场新人为什么非得穿正装?”教授听后,停顿了一下,然后淡定地回了句:“你当然也可以穿得五颜六色,但前提是——先成为某某的董事长那样的人。”这句话点出了一个事实:同一套规则,并不适用于所有人
    优思学院 2025-03-19 12:02 72浏览
  • 在电子制造业中,PCB(印制电路板)作为电子设备的核心组件,其质量直接决定了产品的性能和可靠性。尤其是高端PCB,广泛应用于航空航天、医疗设备、通信设备等领域,对质量的要求近乎苛刻。捷多邦作为PCB行业的领先品牌,深知严格的质量管理体系是确保高端PCB制造成功的关键。1. ​原材料质量控制高端PCB的制造始于原材料的严格筛选。捷多邦采用符合IPC标准的基材,如FR-4、PTFE等,确保材料的电气性能、机械性能和耐热性满足高端应用需求。通过严格的入库检验,包括铜箔附着力、表面平整度等测试。2. ​
    捷多邦 2025-03-19 10:13 77浏览
  • ​ 在智能设备普及的今天,语音识别已成为人机交互的核心入口。然而,环境噪声、口音差异、硬件设计限制等因素常导致识别率下降,影响用户体验。广州唯创电子凭借25年技术积累,推出 WTK6900系列语音识别芯片,通过“芯片性能+算法优化+场景适配”三位一体的解决方案,将标准方案识别率提升至 97%,为行业树立技术标杆。一、WTK6900系列:破解语音识别难题的核心利器1. 高性能芯片架构,奠定识别基础WTK6900系列采用 32位高性能处理器 与 深度神经网络(DNN)算法,支持实时语音信号
    广州唯创电子 2025-03-19 09:11 30浏览
  • 在电子产品制造中,选择合适的PCB至关重要。虽然廉价PCB节省成本,但长期使用下来,它们可能会带来更多的风险和隐患。作为工程师,我们需要权衡PCB的质量与成本,尤其是在高要求的应用中。论文将以捷多邦为例,分析廉价PCB与高质量PCB的差异。 1.材料与性能廉价PCB通常采用低质量材料,这可能会影响其电气和机械性能。相比之下,捷多邦的高质量PCB采用符合行业标准的优质材料(如FR4、PTFE等),确保更高的热稳定性和抗湿性,提升产品的可靠性。 2.准确性与可靠性廉价的PCB工艺
    捷多邦 2025-03-19 09:36 80浏览
  • 全球领先的光学解决方案供应商艾迈斯欧司朗(SIX:AMS)近日宣布,推出两款全新传感器模块,再次彰显其在计算机断层扫描(CT)技术领域的深耕发展。这两款模块作为先进诊断成像技术的核心组件,将为肿瘤学、心血管疾病治疗等多种临床应用提供更精准的诊疗支持,助力实现疾病的早期诊断。新产品将助力CT市场各细分领域医学影像技术升级。针对高端CT市场,艾迈斯欧司朗特别推出专为光子计数探测器设计的新型系统级封装传感器模块,该模块可显著降低辐射剂量,同时提升诊断价值。艾迈斯欧司朗还推出面向价格敏感型CT市场的新型
    艾迈斯欧司朗 2025-03-18 23:20 45浏览
  • 在PCB(印刷电路板)的制造过程中,材料选择对最终产品的性能、稳定性和可靠性有着直接的影响。作为行业领先的PCB制造商,捷多邦始终坚持在材料选择上精益求精,确保每一款PCB产品都能够满足客户对高质量的需求。今天,我们将重点分析FR4、Rogers和铝基板三种常见材料,它们如何影响PCB的质量与性能,以及捷多邦如何通过优化材料选择为客户提供更具竞争力的产品。1. FR4:高性价比的通用材料FR4是最常见的PCB基材,广泛应用于消费电子、通信、计算机等领域。它由玻璃纤维和环氧树脂复合而成,具有良好的
    捷多邦 2025-03-19 10:09 63浏览
  • 在电子领域,高品质线路板是众多电子产品稳定运行的基石。那么,究竟达到怎样的标准,才能被称为高品质线路板呢?​捷多邦小编整理了关于高品质线路板的标准解析​,一起看看吧。 从电气性能角度出发,高品质线路板首当其冲要确保线路导通性良好。这意味着电流能顺畅地在铜箔线路中流动,电阻、电容等关键参数必须严格符合设计要求。无论是在初始运行,还是经过长时间的使​用后,都能维持稳定的电气性能,不出现参数漂移等问题。同时,面对复杂的电磁环境,它要有极强的抗干扰能力,有效减少信号传输时的失真与干扰,保证信号
    捷多邦 2025-03-19 09:33 79浏览
  • 概念在GNSS测量和地理信息系统(GIS)中,基线(Baseline)是指两个或多个接收机之间的直线距离,通常用于描述RTK(实时动态定位)或其他差分GPS技术中的相对位置关系。基线通常由三个分量表示:东向(East)、北向(North)和垂直向(Up),分别表示两个测点之间的东西方向、南北方向和垂直方向的距离差。RTK(Real-Time Kinematic,实时动态)基线是指在RTK GPS测量技术中,两个测站(通常是一个固定的基准站和一个移动的接收站)之间的向量差。这个向量差包括了两个测站
    德思特测试测量 2025-03-19 11:23 85浏览
  • 在PCB制造过程中,表面处理工艺的选择直接影响到电路板的性能、可靠性和成本。捷多邦作为行业领先的PCB制造商,致力于为客户提供高质量、高可靠性的PCB产品。本文将深入探讨沉金、镀金和HASL(热风整平)三种常见表面处理工艺的特点及其对PCB质量的影响,帮助您做出最佳选择。 1. 沉金(ENIG)沉金工艺通过化学沉积在PCB表面形成一层镍金合金,具有以下优势: ​平整度高:适合高密度、细间距的PCB设计,尤其适用于BGA和QFN封装。​抗氧化性强:金层能有效防止铜氧化,延长PC
    捷多邦 2025-03-19 10:11 85浏览
  • PCB层数越多质量就越好吗?多层板制造中的质量控制要点随着电子产品对性能和功能要求的不断提高,多层PCB(多层印刷电路板)已经成为众多高端应用领域的标准配置。很多人存在一个误区:层数越多的PCB质量就一定越好。实际上,层数与质量并不是直接的正比关系,正确的设计和精确的质量控制才是决定PCB质量的关键。1. 层数并非质量的唯一标准多层PCB的质量并不仅仅取决于层数的多少,而是与其设计、制造精度和材料的选择密切相关。增加层数的目的通常是为了提高电路密度和实现复杂的布线结构。如果设计不合理或制造不精确
    捷多邦 2025-03-19 10:14 115浏览
  • ​ 一、公司及产品概述作为国内领先的语音芯片研发企业,深耕语音技术领域25年,其产品以高稳定性、低功耗和多场景适应性著称。公司推出的语音识别芯片系列(如WTK6900系列)融合了语音识别、自然语言处理、音频编解码等核心技术,广泛应用于智能家居、工业设备、医疗电子及消费类产品中。二、核心技术特点语音识别与处理技术 厂家语音识别芯片采用先进的信号处理算法(如MFCC特征提取)和机器学习模型(如DNN、HMM),支持多语言、方言及复杂环境下的高精度识别。芯片内置噪声抑制和回声消除功能,即使在
    广州唯创电子 2025-03-19 08:48 42浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦