2024年4月17日,上海交通大学生物医学工程学院叶坚教授、邵志峰教授团队在Nature期刊发表题为“Digital colloid-enhanced Raman spectroscopy by single-molecule counting”的研究论文,上海交通大学生物医学工程学院致远荣誉计划博士生毕心缘为论文第一作者,邵志峰教授、Daniel M. Czajkowsky教授为论文共同作者,叶坚教授为论文通讯作者。
毕心缘,上海交通大学生物医学工程学院致远荣誉计划博士生;2020年本科毕业于上海交通大学生物医学工程学院;2020年至今于上海交通大学攻读博士学位。
该研究针对表面增强拉曼光谱领域内定量的挑战,系统阐述了基于数字胶体增强拉曼光谱(dCERS)的定量技术。基于单分子计数,dCERS成功实现了超低浓度目标分子的可靠定量检测,为表面增强拉曼光谱技术的普遍应用奠定了重要基础。
研究团队发明了数字胶体增强拉曼光谱(dCERS),利用胶体纳米颗粒,可以实现较高效率的单分子检测。虽然单分子信号强度波动巨大,这与过去的研究结果相吻合,但与常见的单分子表面增强拉曼光谱(SERS)技术不同的是,通过将光谱根据是否存在目标分子拉曼特征峰进行0/1数字化,亦即阴性光谱和阳性光谱(数字信号),随后对溶液中的阳性光谱进行计数。通过该单分子计数的方式可以实现对多种分子(如染料分子、代谢小分子、核酸、蛋白)的定量检测,定量检测限可以达到1fM以下(图1)。其中,dCERS技术所采用的胶体颗粒的合成步骤简单,易于放大生产,在应用中,可以方便地取出每个批次的少量颗粒来针对具体的目标分子预先建立标准曲线,从而可以可靠地用于后续未知浓度样本的定量。
图1. dCERS定量检测原理与不同种类分子的定量标准曲线
在实验中研究人员发现,这些通过阈值确定的单分子事件,其出现次数的分布完全符合泊松统计,因此通过阳性光谱的数量,可以直接简单地确定定量灵敏度与准确性,这与传统的基于模拟信号的定量方法完全不同。如图2所示,通过增加检测总光谱数,可以累积阳性光谱数量,从而有效提升定量的准确性,定量检测误差服从泊松噪声。因此在真实应用场景下,可以根据分子的检出概率和对于准确性、检测总时长等的需求,通过累积阳性光谱数来调控定量检测的准确性,由此dCERS定量检测具备精准可控的可重复性。
研究发现还证明,针对不同的目标分子,尽管浓度与单分子计数的依赖关系具有不同的系数(需要分别进行标定),这些关系都符合吉布斯热力学的理论。事实上,这是首次明确建立了单分子统计的物理基础,并可能适用于拉曼光谱之外的其它单分子计数技术。
为了确立dCERS在实际测量中的潜力,研究团队选取了百草枯和福美双作为展示实例(图3)。百草枯是一种高效、剧毒的除草剂,可以诱导帕金森氏病的发生,目前已有32个国家严格禁止其使用。福美双是一种含硫剧毒杀真菌剂,被欧盟归为二类致癌物。因此,超高灵敏度、准确可靠的定量检测技术对于这些分子的检测非常重要,尤其是致癌物,原则上不存在安全剂量。
选取普通的湖水作为背景并混入微量的百草枯,研究团队成功实现了低于欧盟最大残留量规定三个数量级的检测灵敏度。对于福美双,研究团队选取了实验室培养的豆芽提取液,达到了优于质谱五个数量级的检测灵敏度。并证明了,通过系列稀释的方法,检测中的背景干扰可以得到完美的抑制,从而实现准确的靶分子浓度的测量。而dCERS的超高灵敏度和可靠的统计分布是实现这些定量测量的关键基础。
图3. dCERS在微量分子检测中的应用
总之,该研究展示了dCERS技术基于单分子计数实现了超低浓度目标分子在未知复杂背景中的可重复性定量,无需使用任何目标分子的特定标记。由于不同的目标分子大多具有独特的SERS光谱,dCERS可以实现多种不同分子的同时定量检测,因此具有很好的应用前景。另外,这项工作使用的胶体纳米颗粒可以方便地进行大规模生产和制备,而检测方法相对简单,因此,dCERS有望进一步推动高灵敏检测技术的变革和进步。