MultiportRAM,多读多写寄存器-——基于FPGABRAM的多端口地址查找表与FPGABRAM的资源分析

原创 网络交换FPGA 2024-04-22 11:19

本项目开源,如需要完整源代码移步到此链接:

https://blog.csdn.net/qq_45634652/article/details/138034081?spm=1001.2014.3001.5502

一、背景

      在多端口交换机的设计中,交换机的每个端口都会各自维护一张查找表,数据帧进入到交换机后,需要进行查表和转发。但随着端口数量和表项需求的增加,每个端口都单独维护一张表使得FPGA的资源变得非常紧张。因此,需要一张查找表(本质是可读可写的RAM),能够满足多读多写的功能。但在Xilinx FPGA上,Xilinx提供的BRAM IP最高只能实现真双端口RAM。不能满足多读多写的需求。
      补充:这里不使用其他RAM类型如URAM的原因是,BRAM拥有更好的时序,更适合在高速交换中用于查找表。

二、手写Multiport Ram

      Multiport Ram,即多读多写存储器,本工程实现的是1个口写,同时满足11个口读的BRAM
      为了让vivado在综合的时候把手写ram例化为BRAM,我们需要按照官方手册的要求编写multiport ram。这时需要通过(*ram_style="block"*)array进行修饰。

    查看Vivado的官方手册ug901可知,对于Distributed RAM(LUTRAM)和Dedicated Block RAM(BRAM),二者都是写同步的。主要区别在于读数据,前者为异步,后者为同步的。

      下面给出一种手写多端口bram的方案并给出一种优化FPGA bram资源利用的方法。

Multiport RAM 代码方案

      实现多端口bram最简单的方法就是把读数据部分的逻辑复制11份,写数据部分的逻辑保留1份。部分代码如下,实现位宽73bit,深度为16K的multiport ram:

(*ram_style="block"*)reg [DATA_WIDTH-1:0] bram [0:DEPTH-1];/*-------------复制读端口11份---------------*/    always @(posedge clk)    begin        if(re1)            rd_data1 <= bram[rd_addr1];        else            rd_data1 <= rd_data1;    end/*-----------------------------------------*/    //write    always @(posedge clk)    begin        if(we)            bram[wr_addr]<=wr_data;    endendmodule

资源评估

        利用vivado综合实现后,消耗的资源如下

MultiportRAM16K深度,73位宽的单口写,11口读的RAM消耗的BRAM数为192个。

普通真双口RAM:利用vivado IP核生成的16K深度,73bit位宽的真双口RAM消耗的BRAM数为32个。即如果11个端口各自维护一张地址查找表共使用352个RAM。

对比发现,在满足11个端口同时读地址查找表的条件下,多端口RAM比普通RAM节约了45%左右的BRAM资源


三、Multiport RAM 资源利用的优化

      可能有的同学说,在某些大工程里面,192个BRAM还是有点多。下面我给出了一种降低BRAM资源消耗的方法。

      首先我们把例化的ram array的位宽翻倍

//原本(*ram_style="block"*)reg [DATA_WIDTH-1:0] bram [0:DEPTH-1];//现在(*ram_style="block"*)reg [DATA_WIDTH+DATA_WIDTH-1:0] bram [0:DEPTH-1];

      (有同学会问了,这样资源消耗不是翻倍了吗?···别急!)

      我们把需要写入RAM的数据,73位写data复制成两份,同时写进bram的高73位和低73位,地址不变,其中multi_wdata是我们要写进表中的73位表项,代码如下:

    //bram例化模块的写使能、地址和数据    .we       (   multi_wr),    .wr_addr  (multi_waddr),    .wr_data  ({multi_wdata,multi_wdata})

         在bram输出中,每两个端口共用一个143位的bram行,并根据使能情况赋值:

   //read1    assign rd_data1_wire = rd_data1[72:0]  ;    assign rd_data2_wire = rd_data2[145:73];    always @(posedge clk)    begin        if (re1 & re2) begin            rd_data1 <=  bram[rd_addr1];            rd_data2 <=  bram[rd_addr2];        end        else         if(re1) begin             rd_data1 <=  bram [rd_addr1];        end        else if (re2) begin            rd_data2 <= bram [rd_addr2];        end 
end

***补充:具体代码在文章开头链接

资源评估

        利用vivado综合实现后,消耗的资源如下

MultiportRAM:16K深度,146位宽的单口写,11口读的RAM消耗的BRAM数为112个。

普通真双口RAM:利用vivado IP核生成的16K深度,73bit位宽的真双口RAM消耗的BRAM数为32个。即如果11个端口各自维护一张表共使用352个RAM

对比发现,在满足11个端口同时读地址查找表的条件下,多端口RAM比普通RAM节约了68%左右的BRAM资源


四、防止读写冲突的组合逻辑设计(写优先)

      代码原理,利用组合逻辑时序,当写入地址和读地址相同时,写入地址、数据正常进行但读端口不对RAM进行读取,而是将写入端的数据直接赋值给读出端的数据。

      下一拍,即读写冲突结束后的下一拍,再读一拍RAM中的数据,使得读端口数据保持这一次读的结果(因为组合逻辑在读写冲突时没有真正读RAM,所以RAM输出data会保持上一次输出的data),这一步不是必要的,纯粹为了好看

部分代码如下:

//防止读写冲突,且为写优先逻辑assign multi_rdata0 =(multi_raddr0_f ==multi_waddr_f && multi_raddr0_f !='b0 )?multi_wdata_f:multi_rdata0_ram ;assign multi_rdata1 =(multi_raddr1_f ==multi_waddr_f && multi_raddr1_f !='b0 )?multi_wdata_f:multi_rdata1_ram ;assign multi_rdata2 =(multi_raddr2_f ==multi_waddr_f && multi_raddr2_f !='b0 )?multi_wdata_f:multi_rdata2_ram ;assign multi_rdata3 =(multi_raddr3_f ==multi_waddr_f && multi_raddr3_f !='b0 )?multi_wdata_f:multi_rdata3_ram ;assign multi_rdata4 =(multi_raddr4_f ==multi_waddr_f && multi_raddr4_f !='b0 )?multi_wdata_f:multi_rdata4_ram ;assign multi_rdata5 =(multi_raddr5_f ==multi_waddr_f && multi_raddr5_f !='b0 )?multi_wdata_f:multi_rdata5_ram ;assign multi_rdata6 =(multi_raddr6_f ==multi_waddr_f && multi_raddr6_f !='b0 )?multi_wdata_f:multi_rdata6_ram ;assign multi_rdata7 =(multi_raddr7_f ==multi_waddr_f && multi_raddr7_f !='b0 )?multi_wdata_f:multi_rdata7_ram ;assign multi_rdata8 =(multi_raddr8_f ==multi_waddr_f && multi_raddr8_f !='b0 )?multi_wdata_f:multi_rdata8_ram ;assign multi_rdata9 =(multi_raddr9_f ==multi_waddr_f && multi_raddr9_f !='b0 )?multi_wdata_f:multi_rdata9_ram ;assign multi_rdata10=(multi_raddr10_f==multi_waddr_f && multi_raddr10_f!='b0 )?multi_wdata_f:multi_rdata10_ram;
assign multi_raddr0_ram =(multi_raddr0_f ==multi_waddr_f && multi_raddr0_f !='b0 )?multi_waddr_f: multi_raddr0;assign multi_raddr1_ram =(multi_raddr1_f ==multi_waddr_f && multi_raddr1_f !='b0 )?multi_waddr_f: multi_raddr1;assign multi_raddr2_ram =(multi_raddr2_f ==multi_waddr_f && multi_raddr2_f !='b0 )?multi_waddr_f: multi_raddr2;assign multi_raddr3_ram =(multi_raddr3_f ==multi_waddr_f && multi_raddr3_f !='b0 )?multi_waddr_f: multi_raddr3;assign multi_raddr4_ram =(multi_raddr4_f ==multi_waddr_f && multi_raddr4_f !='b0 )?multi_waddr_f: multi_raddr4;assign multi_raddr5_ram =(multi_raddr5_f ==multi_waddr_f && multi_raddr5_f !='b0 )?multi_waddr_f: multi_raddr5;assign multi_raddr6_ram =(multi_raddr6_f ==multi_waddr_f && multi_raddr6_f !='b0 )?multi_waddr_f: multi_raddr6;assign multi_raddr7_ram =(multi_raddr7_f ==multi_waddr_f && multi_raddr7_f !='b0 )?multi_waddr_f: multi_raddr7;assign multi_raddr8_ram =(multi_raddr8_f ==multi_waddr_f && multi_raddr8_f !='b0 )?multi_waddr_f: multi_raddr8;assign multi_raddr9_ram =(multi_raddr9_f ==multi_waddr_f && multi_raddr9_f !='b0 )?multi_waddr_f: multi_raddr9;assign multi_raddr10_ram=(multi_raddr10_f==multi_waddr_f && multi_raddr10_f!='b0 )?multi_waddr_f: multi_raddr10;


assign multi_rd0_ram =(multi_raddr0 ==multi_waddr && multi_raddr0!='b0 )? 1'b0:((multi_raddr0_f ==multi_waddr_f && multi_raddr0_f !='b0 )?multi_rd0_f :multi_rd0 );assign multi_rd1_ram =(multi_raddr1 ==multi_waddr && multi_raddr1!='b0 )? 1'b0:((multi_raddr1_f ==multi_waddr_f && multi_raddr1_f !='b0 )?multi_rd1_f :multi_rd1 );assign multi_rd2_ram =(multi_raddr2 ==multi_waddr && multi_raddr2!='b0 )? 1'b0:((multi_raddr2_f ==multi_waddr_f && multi_raddr2_f !='b0 )?multi_rd2_f :multi_rd2 );assign multi_rd3_ram =(multi_raddr3 ==multi_waddr && multi_raddr3!='b0 )? 1'b0:((multi_raddr3_f ==multi_waddr_f && multi_raddr3_f !='b0 )?multi_rd3_f :multi_rd3 );assign multi_rd4_ram =(multi_raddr4 ==multi_waddr && multi_raddr4!='b0 )? 1'b0:((multi_raddr4_f ==multi_waddr_f && multi_raddr4_f !='b0 )?multi_rd4_f :multi_rd4 );assign multi_rd5_ram =(multi_raddr5 ==multi_waddr && multi_raddr5!='b0 )? 1'b0:((multi_raddr5_f ==multi_waddr_f && multi_raddr5_f !='b0 )?multi_rd5_f :multi_rd5 );assign multi_rd6_ram =(multi_raddr6 ==multi_waddr && multi_raddr6!='b0 )? 1'b0:((multi_raddr6_f ==multi_waddr_f && multi_raddr6_f !='b0 )?multi_rd6_f :multi_rd6 );assign multi_rd7_ram =(multi_raddr7 ==multi_waddr && multi_raddr7!='b0 )? 1'b0:((multi_raddr7_f ==multi_waddr_f && multi_raddr7_f !='b0 )?multi_rd7_f :multi_rd7 );assign multi_rd8_ram =(multi_raddr8 ==multi_waddr && multi_raddr8!='b0 )? 1'b0:((multi_raddr8_f ==multi_waddr_f && multi_raddr8_f !='b0 )?multi_rd8_f :multi_rd8 );assign multi_rd9_ram =(multi_raddr9 ==multi_waddr && multi_raddr9!='b0 )? 1'b0:((multi_raddr9_f ==multi_waddr_f && multi_raddr9_f !='b0 )?multi_rd9_f :multi_rd9 );assign multi_rd10_ram=(multi_raddr10==multi_waddr && multi_raddr1!='b0 )? 1'b0:((multi_raddr10_f==multi_waddr_f && multi_raddr10_f!='b0 )?multi_rd10_f:multi_rd10);

***补充:具体代码在文章开头链接

读写冲突的仿真结果如下:


五、Multiport RAM仿真和时序

      所有写端口都是一拍写入。读端口是第一拍读使能,读地址,第二拍读出数据。

1.单口写数据

2.单端口读数据

3.多口读相同数据

4.多口同时读不同数据




网络交换FPGA 秉承“工匠”精神,专注网络与交换领域FPGA开发与芯片实现,记录、分享与交流技术上的点点滴滴,与大家共同进步成长。
评论 (0)
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 57浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 152浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 118浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 221浏览
  • 2025年4月13日(中国武汉)——在全球经济分化与地缘政治不确定性加剧的背景下,科技与金融的深度融合已成为推动创新与繁荣的关键动力。为实现科技创新、产业进步和金融发展有机结合,发挥金融对科技创新和产业进步的支持作用,国际金融论坛(IFF)科技金融委员会启动大会暨首届科技金融圆桌会议于4月13日在湖北省武汉市武汉产业创新发展研究院成功举行。同时,IFF科技金融委员会由国际金融论坛IFF与武创院联合成立。本次大会汇聚了来自政府、产业与学术研究机构及金融等多领域的精英,共同探讨科技金融如何更好地服务
    华尔街科技眼 2025-04-15 20:53 52浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 115浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 98浏览
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 226浏览
  • 一、引言:智能化趋势下的学爬玩具开发挑战随着早教理念的普及,学爬玩具作为婴幼儿早期运动能力开发的重要工具,市场需求持续增长。然而,传统学爬玩具开发面临多重挑战:需集成红外遥控、语音交互、电机控制等多模块,开发周期长、硬件成本高;复杂的红外编解码与语音功能实现依赖工程师深度参与,技术门槛陡增。如何以更低成本、更快速度打造差异化产品,成为行业亟待解决的痛点。二、传统开发模式痛点分析硬件冗余红外接收模块、语音芯片、主控MCU分立设计,导致PCB面积增加,BOM成本攀升。开发周期长需工程师独立完成红外协
    广州唯创电子 2025-04-16 08:40 56浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 177浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 90浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 155浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 136浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦