清华张强/北理工李博权Joule:数据驱动实现创纪录双功能电催化活性ΔE=0.57V

锂电联盟会长 2024-04-20 11:20

点击左上角“锂电联盟会长”,即可关注!

水系锌空气电池因其高理论能量密度、固有安全性和低成本优势被视作极具潜力的下一代电化学储能技术。然而,锌空气电池正极氧还原反应与氧析出反应动力学极为惰性,造成锌空气电池能量效率低、副反应严重、循环寿命短。开发促进氧还原与氧析出反应的双功能电催化剂是推动锌空气电池迈向实用化的关键。双功能催化电压差(ΔE)通常被用来定量评估双功能催化剂的催化活性,追求更低的ΔE值是过去20年内双功能催化剂设计的核心任务。在过去20年的探索中,双功能催化剂的活性不断提升,持续创造ΔE值的新低,并于2021年达到了Δ= 0.63 V的边界。然而在其后的三年内,双功能催化活性始终无法得到进一步提升,打破尘封三年的活性记录对推动锌空气电池的实用化进程至关重要。


近日,清华大学张强教授和北京理工大学李博权副研究员等基于数据驱动构筑了一种具有超高催化活性的双功能催化剂。该催化剂打破了现有催化体系的性能边界(ΔE>0.63 V),创纪录地实现了双功能电催化活性ΔE=0.57 V,由此构筑了能够在实用化边界条件下稳定循环的安时级锌空气电池。

图1. 数据驱动催化活性位点复合。

位点复合是实现超高双功能催化活性的关键策略。为了合理地指导位点复合,本研究系统地建立了双功能催化的“位点–组分–性能”构效关系,基于大数据方法筛选氧还原/氧析出催化位点组合(图1)。具体地,金属–氮–碳和过渡金属氢氧化物催化剂分别体现出对氧还原和氧析出反应的高催化活性,其中原子级分散的Fe–N–C位点和NiFeCe LDH位点被分别选择进行位点复合以催化氧还原反应和氧析出反应。
图2. 复合双功能催化剂的形貌表征及结构分析。

负载Fe–N–C位点的FeNC颗粒和NiFeCe LDH位点的LDH颗粒通过材料复合形成FeNC@LDH双功能催化剂,其形貌表征与结构分析如图2所示。可以看到,FeNC和LDH组分的基本形貌得以保留,同时体现出异质元素分布。进一步地分析表明,复合后的FeNC@LDH催化剂既保留了LDH的晶体结构,又充分暴露了原子级分散的Fe–N–C位点。
图3. 复合双功能催化剂电化学性能测试。

基于上述理性设计,复合FeNC@LDH催化剂具有极高的双功能催化活性,创纪录地实现了ΔE = 0.57 V(图3)。这一活性不仅超越了商用贵金属催化剂,同时打破了双功能催化活性尘封三年的记录。进一步地,基于FeNC@LDH催化正极的电池相比贵金属催化剂展现出更小的极化。此外,FeNC@LDH电池表现出更好的倍率性能、更小的充放电电压差和更高的能量效率,同时能够在10 mA cm−2和10 mAh cm−2的条件下循环607圈,在50 mA cm−2和25 mAh cm−2的条件下稳定循环(图4)。
图4. 可充电锌空气电池性能测试。

为了探索锌空气电池的实用化潜力,本研究构筑了安时级锌空气电池器件(图5)。基于FeNC@LDH 正极的安时级锌空气电池的容量为6.4 Ah,能够实现2.4 W的输出功率和4.0 A输出电流。此外,安时级锌空气电池能够在1.0 A和1.0 Ah的实用化边界条件下进行稳定循环,在20圈的储能后没有明显性能衰减,表明锌空气电池具有在长时储能、高倍率高面容量储能场景的应用潜力。
图5. 安时级锌空气电池器件及其性能测试。

这一成果近期发表在Joule 上,文章的第一作者是清华大学博士研究生刘嘉宁,共同通讯作者是清华大学张强教授和北京理工大学李博权副研究员。

原文(扫描或长按二维码,识别后直达原文页面):
A data-driven bifunctional oxygen electrocatalyst with a record-breaking ∆E=0.57 V for ampere-hour-scale zinc–air batteries
Jia-Ning Liu, Chang-Xin Zhao, Juan Wang, Xuan-Qi Fang, Chen-Xi Bi, Bo-Quan Li*, Qiang Zhang*
Joule2024, DOI: 10.1016/j.joule.2024.03.017

作者简介

张强,清华大学长聘教授、博士生导师。曾获得国家自然科学基金杰出青年基金、中国青年科技奖、教育部青年科学奖、北京青年五四奖章、英国皇家学会Newton Advanced Fellowship、清华大学刘冰奖、国际电化学会议Tian Zhaowu奖。2017–2023年连续七年被评为“全球高被引科学家”。长期从事能源化学与能源材料的研究。近年来,致力于将国家重大需求与基础研究相结合,面向能源存储和利用的重大需求,重点研究锂硫电池、锂金属电池、固态电池、金属空气电池的原理和关键能源材料。提出了锂硫电池中的锂键化学、离子溶剂配合物概念,并根据高能电池需求,研制出复合金属锂负极、碳硫复合正极等多种高性能能源材料,构筑了锂硫软包电池器件。现担任国际期刊Angew. Chem.首届顾问编辑,J. Energy Chem.、Energy Storage Mater.副主编,Matter、Adv. Funct. Mater.、储能科学与技术等期刊编委。曾获得教育部自然科学一等奖、化工学会基础研究成果一等奖等。

https://www.x-mol.com/university/faculty/21097

李博权,副研究员,九三学社社员,北京理工大学前沿交叉科学研究院预聘助理教授/特别副研究员,博士生导师。主要从事锂硫电池、金属锂电池、金属空气电池等高比能二次电池的化学机制、材料构筑与器件应用等方面的研究。相关研究成果发表SCI论文100余篇,包括43篇ESI高被引论文,引用15000余次,H因子64,授权6项中国发明专利。主持科技部重点研发课题、国家自然科学基金等项目,入选2021–2023年科睿唯安全球高被引科学家。

https://www.x-mol.com/university/faculty/327157
相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)

锂电联盟会长 研发材料,应用科技
评论
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 98浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 83浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 40浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 63浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 167浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 113浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 103浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 125浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 66浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 141浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦