三款电路优化你的充电器设计

原创 亚德诺半导体 2024-04-17 18:01


亲爱的,我的充电器在哪里?就目前而言,这可能是生活中最常见的问题了。世纪之交,电池(尤其是基于锂离子的电池)成本的降低和性能的提高,推动了电池供电的储能和便携式设备的稳步增长。此外,超级电容器由于具有独特的性质,也越来越多地用于各种应用


铅酸电池是一项已有150年历史的技术,至今仍广泛用于汽车、轮椅、踏板车、高尔夫球车和不间断电源(UPS)系统。一旦能量耗尽,这些储能设备必须重新充电。2019年,全球充电IC出货量为11.6亿颗,预计2024年将增长至17.2亿颗,年增长率为 8.6%,相当健康。收入分别为5181亿美元和7354亿美元,复合年增长率为7.3%。图1显示了这一趋势,其来自OMDIA的“电源IC市场跟踪 - 2019年”。


图1.全球充电IC市场


对更多电力、更长续航里程或运行时间的需求,要求提高储能设备使用的电压。例如,机器人、无人机、电动工具和许多其他事物中使用的锂离子电池堆已经从一两个电池单元增加到多个(最多12个)电池单元。一个12芯锂离子电池堆可提供最大50.4 V的电压。在相同电流额定值下,12芯电池的续航时间是1芯电池的12倍。或者,可以将12节电池并联以获得更高的功率,但这种方法会使电流增加12倍。更高的电流会导致更多的传导损耗,因此不宜采用并联电池。


带备用电池的应急照明、UPS备用电源、HVAC等工业系统使用24 VDC电源,即使用24 V电池来为这些系统提供备用电源。然而,根据IEC 61131-2和IEC 60664-1标准,24 VDC电源在瞬态条件下可升至60 V峰值电压。


在任何一种情况下,设备都要求充电器解决方案能够适应更高电池电压,并能承受瞬态事件期间的更高输入电压。





充电器基础知识

充电器有许多拓扑结构。线性充电器通过功率开关降低电源和电池之间的电压差。此类充电器效率最低,因为当电源和电池之间的电压差很大时,功率开关会消耗大量功率。升压充电器将来自电源的电压升压到电池电压。这种拓扑结构要求电源电压低于电池电压。降压充电器对来自电源的电压进行降压,并要求电源电压高于电池电压。升压-降压充电器可以使用高于或低于电池电压的电源电压为电池充电。这种拓扑结构需要四个功率开关(降压拓扑只需要两个),而且效率一般不高。


同步整流降压充电器效率最高,是本文的重点。图2显示了一个通用同步整流降压充电器电路。如今,大多数降压充电器都在相对较低的电压下运行。许多充电器的额定输入电压仅为28 V,有些为40 V。如果允许±10%的输入电压调节和2 V的降压充电器压降,那么额定值28 V的充电器实际上只能为5S锂离子电池堆(最大)充电。我们将研究一个新的60 V输入充电器IC系列,它支持更高充电电压——电池电压高达52 V(或12芯锂离子电池堆),并且可以承受65 V的输入电压瞬变。


图2.通用同步整流降压充电器


充电器的待机电流应很低以节省能源。Energy Star®规定待机功耗为30 mW或更少的手机充电器和其他小型充电器为五星。一星适用于待机功耗为300 mW或更高的充电器,其他星级适用于介于两者之间的其他充电器。Energy Star旨在降低个人充电器的功耗,这些充电器在不使用时大多也不会拔下来。在任何特定时间,全球有超过10亿个此类充电器连接到电网。


尽管铅酸电池、锂离子电池和超级电容器都是储能设备,但它们的充电/放电特性明显不同。我们将考察这些特性,并讨论每个特性的充电解决方案。一个好的电池充电器可提供良好的电池性能和耐用性,尤其是在不利条件下充电时。





铅酸电池充电器

铅酸电池是现存最古老的可充电电池,1859年由法国医生Gaston Planté发明。一百五十年后,它仍然广泛用于汽车、轮椅、踏板车、电动自行车、高尔夫球车和UPS系统。


铅酸电池必须缓慢充电。典型充电时间为8到16小时。电池必须始终以充电状态存储,定期进行完全饱和充电对于防止硫酸盐化至关重要。通常的做法是在大约8小时内将铅酸电池充电至70%,然后再用8小时进行最重要的补足充电。如果铅酸电池不时接受完全饱和充电以防止硫酸盐化,则部分充电也没问题。让电池长时间处于浮动充电状态不会造成损坏。


找到理想的充电电压限值至关重要。高电压(高于2.45 V/单元)可产生良好的电池性能,但由于正极板上的板栅腐蚀,电池使用寿命会缩短。低电压限值会造成负极板硫酸盐化。温度也会影响电池电压,温度系数典型值为–5 mV/°C(每10°F每电池单元0.028 V)。好的充电器必须补偿此温度系数,以避免电池在高温时过度充电或在低温时充电不足。


例如, MAX17702 (参见图3)是一款完整的铅酸电池充电器控制器,设计支持4.5 V至60 V的输入电压范围。该器件提供高效率(超过97%)、高电压、同步降压解决方案,可为12 V/24 V/48 V铅酸电池组充电。图4a和4b显示了其充电周期和充电效率。


图3.高压铅酸电池充电器控制器


图4a.MAX17702铅酸充电周期


图4b.MAX17702充电效率


铅酸电池能量密度低,不适合便携式设备。便携式设备需要锂电池。





锂离子电池充电器

由于重量轻和高能量密度,锂离子电池是普遍接受的用于便携式应用、重工业、电驱动和卫星的电池。


锂离子电池的维护工作量很少。这种电池没有记忆效应,不需要故意完全放电就能保持良好状态。但它需要保护电路,电池堆内部和充电器均需要,以防止短路、过充、热失控和过度放电。锂离子电池如果在1.5 V/单元以下保持一周或更长时间,就可能产生枝状晶体,影响安全性。


为防止过度放电,内置电池保护电路将电池置于睡眠状态。当电池在放电状态下储存,自放电使电压降至截止点时,就会发生上述情况。常规充电器将这样的电池视为无法使用,电池包通常被丢弃。高级锂离子充电器具有唤醒特性或“预充电”功能,可以对由于过度放电而进入睡眠状态的锂离子电池充电。在预充电模式中,充电器应用很小的充电电流以将电压安全提升到2.2 V/单元与2.9 V/单元之间,从而激活保护电路,然后开始正常充电。


在正常充电期间,锂离子充电器以恒流恒压(CCCV)模式运行。充电电流是恒定的,电压达到设定限值时便不再上升。达到电压限值时,电池饱和,电流下降到电池不能再接受进一步的充电为止,此时充电终止。每个电池都有自己的低电流阈值。


锂离子电池在充电时应始终保持凉爽。锂离子电池不能吸收过多电荷。因此,监控电池温度及其充电电压以确保电池健康和安全非常重要。良好的充电器必须包含这些特性。


图5给出了高级锂离子电池充电器的例子。MAX17703 是一款高效率、高电压、同步、降压充电器控制器,设计支持4.5 V至60 V的宽输入电压范围。该器件为最多12芯锂离子电池堆提供了完整的充电解决方案。


图5.高级高电压锂离子电池充电器电路


该器件分别为±4%和±1%时提供精确的CCCV充电电流/电压。当充电电流减小到收尾电流阈值时,充电器进入补充充电状态;收尾定时器周期结束后,充电器退出充电状态。当输出电压低于充电阈值电压时,充电器启动充电周期。这是一个很棒的特性,可以让长时间留在充电座上的电池保持满电状态,而不会消耗太多电力,并且符合Energy Star要求。该器件可以检测和预处理深度放电电池,利用预充电特性将其唤醒。为了提供更多保护,该器件会检测电池温度,使得充电只能在规定温度范围内进行。它还有一个输入短路保护特性,用于在输入意外短路时防止电池放电。图6显示了MAX17703的充电周期。


图6.MAX17703锂离子电池充电周期





超级电容充电器

超级电容器相比电池有一些独特的优势,因此越来越多地用于各种应用。超级电容器依据静电原理工作,没有化学反应,避免了与电池化学存储相关的寿命问题。其高耐用性允许数百万次的充/放电循环,使用寿命长达20年,比电池高出一个数量级。其低阻抗支持快速充电和放电,几秒钟便可完成。另外,它还有适度的长时间保持电荷的能力,这一切使超级电容器非常适合需要快速充放电循环的应用。超级电容器还能与电池并联使用,从而支持负载转换期间需要瞬时峰值功率传输的应用。


超级电容器的快速充放电循环要求充电器能够处理大电流,在充电过程中以恒流(CC)模式平稳工作,充电可能从0 V开始,一旦达到最终输出值,则以恒压(CV)模式工作。在高电压应用中,许多超级电容器串联在一起,需要充电器来管理高输入和输出电压。


MAX17701 (参见图7)是一款高效率、高电压、同步、降压超级电容充电器控制器,专为大电流充电而设计,可在4.5 V至60 V的输入电压范围(VDCIN)内工作。输出电压可编程,范围为1.25 V至(VDCIN–4 V)。该器件利用外部N-MOSFET提供输入电源侧“逻辑或”功能,防止超级电容器放电回到输入端。图8显示了简单但电流很高的充电曲线。


图7.高电压、大电流超级电容充电器


图8.MAX17701超级电容充电曲线





结论

电池供电的储能和便携式设备的使用稳步增长。对更多电力、更长续航里程或运行时间的需求,要求提高电池堆使用的电压。在使用24 VDC电源的工业系统应用中,瞬态条件下可以看到60 V峰值电压。传统充电器解决方案大多以28 V输入为限。得益于高电压同步降压充电拓扑结构,ADI公司的新型充电器解决方案可实现更高的电池堆电压和充电效率。


铅酸电池、锂基电池和超级电容器都是储能设备,具有非常不同的充电/放电特性,需要专用充电器才能获得最优充电解决方案。高级电池充电器还提供充分的保护以保障电池性能和耐用性,尤其是在不利条件下充电时。这些在较新的充电器解决方案中也得到解决。





👇点击探索ADI“芯”世界

·
·


亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 121浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 118浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 248浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 170浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 99浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 88浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 578浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 173浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 128浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 230浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 196浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 222浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦