基于FPGA的多通道高速信号采集处理平台设计

FPGA技术江湖 2024-04-17 07:33

大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。“煮酒言欢”进入IC技术圈,这里有近100个IC技术公众号。



应用领域:

硬件平台:



概述
高速信号采集处理广泛应用于各个领域,随着科学技术的飞速发展,对信号采集处理装置的性能要求也越来越高。在该领域,我国的研究与产业化均起步较晚,大多数国内厂商的设备依赖进口,价格昂贵,功能灵活性不足。
本团队针对现有信号采集处理装置采样通道数少、动态接收范围小、灵活性针对性差等不足,提出了更加优化、更为全面的包括采集预处理(完成模拟域的放大、滤波、传入模拟-数字转换模块)、处理(基于FPGA的数字域信号处理算法)和传输(包括万兆以太网SFP+和PCIe 2.0 ×8传输接口)三大模块为一体的一整套解决方案。

 主要创新点 
1、各项参数指标较现有技术显著
高速信号采集处理广泛应用于各个领域,随着科学技术的飞速发展,对信号的采集处理装置也提出了越来越高的要求。
在用作数字接收机的场景下,在传统的模拟接收机中,模拟正交混频器难以做到严格的90°相位差,且I/Q两路放大器滤波器几乎不可能做到完全相同。
[1]专用DDC芯片,具有增益动态调节范围小、带外抑制差、处理精度低的缺点以及在面对不同应用需求,灵活度低针对性差。
[2]现有的一些高速采样卡应用场景受限,必须配合一整套设备使用,且有采样通道数少、采样速率低、灵活性针对性差等不足。
为此,本作品提供了更加优化、更为全面的包括采集、处理和传输三大模块为一体的一整套解决方案。具体技术指标如下:
* 最大支持四通道同步采集;
最大支持-10dB~+53dB,共128档程控增益控制,0.5dB步进;
最高支持16bit模拟-数字转换精度;
支持20M~125MSPS可调采样率;
数据传输到PC端最高速率达32Gbps
板载8GbDDR3存储器 
软硬件自主研发设计的全套完善系统

本作品以自主设计的数模结合印制电路板为基础,FPGA程序、C语言程序均为团队自行开发,不借助任何成品模块。硬件系统保证了信号完整性、电源完整性及电磁兼容性,工作稳定、性能良好。整个软件系统完整、成熟、稳定性好,且系统的测试、调试程序、接口也非常完善,方便用户使用。
 
3、兼具板卡模式和独立仪器模式
板卡模式下,可将多卡并行复用,实现高效扩展
板卡模式下,可将多块多通道高速信号采集处理卡插入机箱中的PCIe插槽,通过板间同步信号的连接,实现多卡并行工作,从而方便地成倍扩展通道数量。
独立仪器模式下,可远离接收端PC机,实现超远距离传输
与传统嵌入于机箱的信号处理板卡相比,本平台在兼具传统的板卡模式之余,设计了万兆以太网SFP+接口,可作为独立仪器,远离接收端PC机放置,实现超远距离高速传输。此外,由于其独立性强、体积小,为嵌入信号源端提供了可能。
 
本系统已申请国家发明专利、实用新型专利以及软件著作权。本系统已申请三项国家发明专利、三项实用新型专利和两项软件著作权。
三项已授权实用新型专利如下:
《一种核磁共振信号采集处理装置》,201721626471.9
《一种多通道宽动态范围高速信号采集处理装置》,201822012511.1
*基于FPGA的可变带宽的核磁共振信号实时处理系统》,201820448016.2

两项实审中发明专利如下:
《一种核磁共振信号采集处理装置》,201711227275.9
《一种基于FPGA的磁共振信号实时处理方法》,201711233672.7

一项初审中发明专利如下:
《一种多通道宽动态范围高速信号采集处理装置》,201811465362.2

两项软件著作权如下:
《多通道磁共振信号数字下变频软件系统》,2018SR215409
《多通道高速信号采集处理软件系统》,2019SR0544832

系统架构 
1. 系统设计指标与系统总体架构

1.1 系统设计指标

系统拟实现的总体主要技术指标如下:
通道数:四通道;
增益调节范围:-10dB~+53dB
增益调节步进:0.5dB,共128档程控增益控制;
采样率:20M~125MSPS;
采样精度:16bit;
板载数据存储容量:8Gb;
数据上传到PC端速率:32Gbps;

1.2 系统总体方案

整套系统的架构如图2-1所示。以核心处理板为核心,由信号源产生的待处理模拟信号通过同轴线缆连接到核心处理板的信号接口,同时,连接同步时钟等其他相关信号到核心处理板。LCD显示屏通过FFC/FPC软排线连接到核心处理板的ARM处理器上。在核心处理板上完成处理后的数据通过光纤连接到PC端。

2-1 系统总体实现架构方案
核心处理板总体架构方案如图2-2所示,主要包括以下部分:四路模拟信号采集模块、核心处理模块、数据片外存储模块、与PC机端的数据及控制信号交互模块以及电源模块。
图2-2 核心处理板总体架构方案
 
2. 指标论证与方案设计

2.1 模拟前端方案论述

为适应不同场景需求,本核心处理板上设计了可选的两套模拟前端放大方案,包括两路宽带(10 MHz~200MHz)放大和两路特定频点(63.5MHz)的放大。
以针对63.5MHz特定频点的放大为例,整条通路上包括两级压控增益放大器用于实现0.5dB的调节步进;一级用于抗混叠滤波的带通滤波器;一级固定增益放大器;一级用于进一步抑制由于放大器的非线性所产生的谐波的低通放大器。其中,VGA的增益可以通过FPGA实时调节。
四路经过放大/缩小的信号被传入模拟-数字转换芯片,本系统中所选用ADI公司的串行模数转换器AD9653。AD9653拥有4个通道,最高16bit精度,采样速率最高可达125 MSPS

2.2 核心处理器方案论述

多通道高速信号采集处理平台需要支持对最多四路最高125Mbps的模拟信号的实时处理,需要支持高速(1Gbps)的 LVDS 接口。此外,由于要完成大量信号处理类算法,因此对DSP资源需求量也很大。而为了将处理完的数据及时发送到PC端,需要支持高速串行SERDES接口。整个处理过程庞杂,对时序要求严格,因此,需要核心处理器具备强大的处理能力及丰富的逻辑资源。
为满足上述要求,本系统采用Xilinx公司的Kintex-7系列FPGA,具体型号为XC7K325T-2FFG900C。该芯片拥有326,080个逻辑单元,16,020Kb的片上RAM存储资源,840个DSP48资源,最大时钟输入速率为933MHz,用户I/O口为500个,支持外部扩展SDR、DDR、DDR2 SDRAM和DDR3 SDRAM ,支持最高1,400Mbps的LVDS接收,GTX bank支持12.5Gbps的收发。
结合外设接口传输需求和FPGA代码的资源消耗量,综合评估,该芯片是在能够满足本系统的各项需求的前提下,具有较高性价比的选择。

2.3 数据缓存方案论述

本系统缓存方案的设计分为FPGA片上存储和板载存储器两部分。FPGA片上缓存的优点是访问迅速并且处理时延短,但是容量非常有限。板载存储器缓存的优点是容量大,但访问读写速度相对慢,且面临跨时钟域亚稳态等问题。
基于上述优缺点,对于存储资源的使用如下:面向PC机的传输利用板载DDR3 SDRAM,其他数据缓存利用FPGA片上存储资源。
其中,板载存储器DDR3 SDRAM选用4片镁光科技的 MT41K128M16JT-93K,FPGA提供额外的8Gb的存储空间,使用1,600Mbps传输速率的设计方案。

2.4 万兆以太网接口方案论述

万兆以太网遵循IEEE802.3ae 标准,保留了与 10/100/1000M 三速以太网相同的数据帧格式,帧长度的界定,但在传输速率上具有显著提升,此外,该标准指明通过光纤介质进行信号的传播。
在网络接口的光模块选择上,SFP+相比于 XFP 体积小,适配 IEEE802.3ae协议并遵循SFF-8431 协议,其 PHY 和 MAC 层转换由FPGA处理器实现。因此本系统选择SFP+光模块作为网络硬件接口。

2.5 PCIe接口方案论述

为了能在需要时作为板卡模式使用,本核心处理板同时配备了PCIe2.0 ×8的传输方案,单通道带宽为500MB/s,采用8b/10b 编码方式,其总共的有效数据带宽为32Gbps。超出本系统所需基本需要,并留有余裕,便于以后功能扩展。
 
设计演示 

1.电源测试

在确认电源网络和地网络之间不存在短路现象之后,即可上电对各路电源进行测试。在测试过程中主要关注输出电压值精度,及其与理论设计值之间的误差,以及纹波。各个电源电平和纹波测试结果如下表5-1所示。从表中可以看到,各电压均正确且电源纹波控制得比较好,是各负载芯片可以正常工作的重要前提。
表5-1 电源电平和纹波测试结果
电源名
设计电压(V)
实际电压(V)
误差
纹波峰峰值(mV)
9V_A
9
8.9433
0.63%
20.50
5V_A
5
4.9705
0.59%
15.50
3P3V_D1
3.3
3.2817
0.55%
13.20
3P3V_D2
3.3
3.2944
0.17%
15.80
3P3V_D3
3.3
3.2797
0.62%
16.50
2P5V_D
2.5
2.4978
0.09%
17.80
2V_D
2
2.0063
0.32%
12.50
1P8V_A
1.8
1.7927
0.41%
15.40
1P8V_D
1.8
1.8039
0.22%
13.40
1P5V_D
1.5
1.4948
0.35%
11.60
1P2V_D
1.2
1.2015
0.13%
20.80
1V_D1
1
1.0158
0.16%
9.80
1V_D2
1
0.9960
0.40%
13.6
0P75V_REF
0.75
0.7443
0.76%
8.0
0P75V_VTT
0.75
0.7459
0.55%
8.8


2.复位和时钟模块

首先,测试复位信号。针对全局复位信号进行测试。可以看到复位信号输出的电平变化如图5-1所示,当用手按键时,全局复位信号置为低电平;当松开按键时,信号恢复成高电平。
图5-1 复位信号测试

其次,测试时钟信号。板上时钟信号众多,包括有50MHz单端时钟,用于操作系统和外设的工作;200MHz差分时钟,用于逻辑触发时钟;156.25MHz差分时钟,用于万兆以太网的IP核输入时钟。以50MHz单端时钟的测量为例,如图5-2所示为测试结果。
图5-2 时钟信号测试

3. DDR3信号测试
测试FPGA外部缓存DDR3的信号完整性。DDR3的运行速率为1600Mbps,编写测试程序持续对DDR3进行读写
利用示波器的三个差分探头分别测试CLKP/CLKN(黄色)、LDQS/LDQSN(粉红色)、DQ0/GND(蓝色),能看到如图5-3所示测试结果
800MHz差分时钟眼图,如图5-4所示。可以由示波器读出该信号眼高为1.1366V,眼宽为578ps,眼交叉比为50.37%,差分时钟设计指标通过了LeCroy 示波器的QualiPHY对1600Mbps DDR3的标准测试,因此眼图各指标符合设计要求。生成的测试报告结果,如图5-5 所示
5-3 DDR3部分信号测试结果图

图5-4 DDR3差分时钟眼图测试结果图

5-5 DDR3 物理层一致性测试报告

4. 万兆以太网数据链路测试

首先针对SFP+数据链路,利用Vivado软件中IBERT IP核对万兆以太网的速率进行测试。使用光纤将TX和RX端环回互连,测试编码使用PRBS-31。5-6(I)是使用千兆光纤,可见眼图饱满,信号完整性好。图 5-6(II)是使用万兆光纤,测试协议类型选用10GBase-R,当数据速率是 10.3125Gbps 时测试收发数据链路,可见眼图受制于自身速率和板材的损耗角影响,虽然不如千兆时饱满,但测试结果误码率为0,能够满足需求。
            (I)                                                       (II
5-6 SFP+数字眼图测试

5. PCIe数据链路测试

对于PCIe,如图 5-7所示,在主机中识别到EP设备。

图5-7 主机识别PCIe 设备

编写测试程序,由主机与核心处理板环回发送接收数据,然后统计数据的传输速率。如表5-2所示,PCIe的写存储器平均速率是1467.6MB/sPCI的读存储器平均速率是1665.2MB/s该结果符合设计要求。
5-2 PCIe性能测试
项目
1
2
3
4
5
写存储器
1475MB/s
1472 MB/s
1451 MB/s
1434 MB/s
1506 MB/s
读存储器
1591MB/s
1680 MB/s
1687 MB/s
1665 MB/s
1703 MB/s
 

6.系统功能测试

在完成对板上各模块及功能测试后,对系统进行级联测试。系统的实物连接如图5-8所示。
将用于信号产生的PC机的模拟信号输出接口,用同轴线缆连接到核心处理板的一路信号接口,同时,用同轴线缆连接同步时钟等其他相关信号到核心处理板。LCD显示屏通过FFC/FPC软排线连接到采集处理板上。在核心处理板上完成处理后的数据通过光纤连接到PC端。
5-8 系统测试实物连接图

连接好系统后,给核心处理板上电,负责收发的两台PC机开机。在如图5-9所示的LCD触摸液晶屏的界面上设置相关参数。
5-9 LCD参数设置界面

将发送端的上位机打开,设置各项参数,发送模拟核磁共振信号。如图5-10所示。
5-10 发送端上位机界面

将接收端上位机打开,调入自动保存的文件,可以看到恢复出来的图像。如图5-11所示。
图5-11 接收端上位机界面

- THE END -

🍁


往期精选 

 
 

【免费】FPGA工程师人才招聘平台

FPGA人才招聘,企业HR,看过来!

系统设计精选 | 基于FPGA的实时图像边缘检测系统设计(附代码)

基于原语的千兆以太网RGMII接口设计

时序分析理论和timequest使用_中文电子版

求职面试 | FPGA或IC面试题最新汇总篇

资料汇总|FPGA软件安装包、书籍、源码、技术文档…(2024.01.06更新)

FPGA就业班,05.04开班,新增课程内容不加价,高薪就业,线上线下同步!

FPGA技术江湖广发江湖帖

无广告纯净模式,给技术交流一片净土,从初学小白到行业精英业界大佬等,从军工领域到民用企业等,从通信、图像处理到人工智能等各个方向应有尽有,QQ微信双选,FPGA技术江湖打造最纯净最专业的技术交流学习平台。


FPGA技术江湖微信交流群

加群主微信,备注姓名+学校/公司+专业/岗位进群


FPGA技术江湖QQ交流群

备注姓名+学校/公司+专业/岗位进群

FPGA技术江湖 任何技术的学习就好比一个江湖,对于每一位侠客都需要不断的历练,从初入江湖的小白到归隐山林的隐世高人,需要不断的自我感悟自己修炼,让我们一起仗剑闯FPGA乃至更大的江湖。
评论
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 91浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 163浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 70浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-29 14:30 118浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 76浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • By Toradex胡珊逢简介嵌入式领域的部分应用对安全、可靠、实时性有切实的需求,在诸多实现该需求的方案中,QNX 是经行业验证的选择。在 QNX SDP 8.0 上 BlackBerry 推出了 QNX Everywhere 项目,个人用户可以出于非商业目的免费使用 QNX 操作系统。得益于 Toradex 和 QNX 的良好合作伙伴关系,用户能够在 Apalis iMX8QM 和 Verdin iMX8MP 模块上轻松测试和评估 QNX 8 系统。下面将基于 Apalis iMX8QM 介
    hai.qin_651820742 2024-11-29 15:29 151浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 59浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 163浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 119浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 在现代科技浪潮中,精准定位技术已成为推动众多关键领域前进的核心力量。虹科PCAN-GPS FD 作为一款多功能可编程传感器模块,专为精确捕捉位置和方向而设计。该模块集成了先进的卫星接收器、磁场传感器、加速计和陀螺仪,能够通过 CAN/CAN FD 总线实时传输采样数据,并具备内部存储卡记录功能。本篇文章带你深入虹科PCAN-GPS FD的技术亮点、多场景应用实例,并展示其如何与PCAN-Explorer6软件结合,实现数据解析与可视化。虹科PCAN-GPS FD虹科PCAN-GPS FD的数据处
    虹科汽车智能互联 2024-11-29 14:35 151浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 69浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 65浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦