吉林大学李路团队:氨的可持续合成,从哈伯法到创新催化策略的转变

果壳硬科技 2024-04-16 14:00

欢迎星标 果壳硬科技

氨是一种关键的化学原料和潜在的氢能载体,其高效合成是其利用的关键步骤。追求“绿色氨”生产,取代集中式、高能耗、重环境污染的Haber-Bosch工艺,在较温和的条件下使用可再生能源,是人类可持续发展的前沿技术和关键目标。近年来,氨合成方法的创新,如光化学、电化学和低温等离子体,以及新的催化剂如电子化合物、氢化物、稀土氮化物等,大大扩大了氨合成研究的深度和范围。


氨的气相合成与应用


吉林大学李路团队总结了以N2、H2为原料的气-固相氨合成过程的最新进展和挑战:包括低温热催化合成氨、光催化和光热催化合成氨以及等离子体催化合成氨。气-固相合成氨不仅能实现绿色氢的有效利用,而且为其储存和运输提供了一个可行的解决方案。


作者综述了最近开发的先进的多相催化剂和外场驱动在合成氨过程中的作用方式,确定了催化剂设计和外场刺激的协同作用规律,为克服传统氨合成中固有的热力学和动力学限制提供深刻的见解。在回顾了已经取得的阶段性成果后,作者从理论和实际应用的多个角度突出TRL和挑战,并展望了未来的工业应用前景,旨在给读者提供较为系统和科学的合成氨研究思路,促进向“绿色氨”生产的转变。


相关工作以“Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies”为题在ChemSusChem上发表论文。需要注意的是,由于催化机理和反应途径的差异,对液相光催化和电催化固氮的研究超出了本综述的范围。



热催化合成氨


在过去的一个世纪里,热催化氨合成的研究主要集中在降低Haber-Bosch(H-B)工艺的温度和压力上。N2分子的化学稳定性源于其较强的N≡N键能(945.33 kJ/mol)和较低的电子亲和性(-1.9 eV)。因此,在热驱动的催化过程中打破N≡N键通常需要苛刻的反应条件。根据Sabatier原理,理想的催化剂应该以中等强度吸附反应物(或中间产物):强度足以激活反应物,但又不至于阻碍产物解吸。由于吸附在过渡金属表面的 NHx(x = 0、1、2)物种的吸附能EN与反应过渡态能垒EN-N之间的线性制约关系(即Brønsted-Evans-Polanyi关系),大大限制了过渡金属氨合成催化剂的发展。


为了规避合成氨反应线性制约关系实现低温低压温和条件下合成氨的常用策略可以总结如下: 

(1)通过将电子传递给过渡金属, 反馈到N2的π*反键轨道, 从而加快N2的解离吸附。

(2)通过在催化体系中引入第二个非过渡金属组分(碱/碱土金属氢化物),使部分或所有中间物种吸附在非过渡金属的活性中心上。

(3)结合Mars-van Krevelen机制,构建易于吸附并激活N2的氮空位载体和用于产生氢原子的过渡金属双位点协同催化剂,使用不同的位点激活两种反应物,能长时间高效率催化N2和H2反应产NH3,有效地避免了产物在过渡金属位点难脱附的弊端。


热催化氨合成反应的机理理解和催化剂设计


尽管如此,目前研究中的各种不同类型的温和条件合成氨催化剂并没有进行进一步的扩大化实验,没有在高空速和压力的工业生产条件下进行稳定性与催化速率的研究。新兴催化剂的生产工艺与生产成本也较复杂与高昂,为了实现更温和条件下的固氮反应,在设计过程中需要更加注重催化剂的可放大性与实际生产的相关性。


光催化与光热催化合成氨


光催化和光热催化合成氨能利用来源广泛的太阳能激活惰性N2分子,从而为在环境条件下合成氨提供了理想途径。在光照条件下,半导体光催化剂受外部刺激,产生光激发电子-空穴对。电子跃迁到导带,而空穴则留在价带。光生电子具有还原能力,通过光催化剂表面的催化活性中心(如金属或阴离子空位)进入表面吸附的 N2 的反键 π* 轨道,从而还原和活化N2分子。


与高温多相催化中的传统解离途径不同,光催化合成氨通常被认为是一种低能耗的缔合途径。在这种缔合途径中,吸附的N2最初部分氢化,产生 N=NH 中间体。该中间体继续接受电子和质子,导致 N≡N 键断裂,逐步还原成 NH3。这一过程可以通过远端机制或交替机制进行,具体取决于质子和电子的反应顺序以及催化剂表面的化学环境。理想的光催化剂应能最大限度地利用入射太阳光产生高能光电子,并建立高效的电子传递通道,从而促进催化剂与表面吸附的 N2 分子之间的快速光激发电子传递。


光催化氨合成反应的机理理解和催化剂设计


光(热)催化氨合成过程的能源可以完全来自于太阳光,反应条件温和,具有很大潜力,但制约其实现规模化生产的主要原因是反应速率过低,光能到化学能的转换效率低。究其光化学反应本质,生产过程的时间敏感性强,受到昼夜交替的影响。


为了解决其生产效率低的问题不仅需要从催化剂的设计角度,设计高效廉价的光催化剂,还需要在反应器设计以及光源上进行多角度的研究。除提升催化剂本征反应活性之外,提升技术成熟度,开发更高效的反应器也是重要研究方面。可以通过菲涅尔透镜等聚光手段将来自太阳的光能增强到完成反应的光强。其时间敏感性可以通过研究更高效的人工光源改进,将研究中最常使用的Xe灯替换为更加廉价,更便于大规模制造的LED光源。


等离子体催化合成氨


等离子体是物质存在的第四种状态,由电子、各种离子、分子和激发态物种组成。通过对气体施加能量而产生的,产生方式包括火花放电、电晕放电、介质阻挡放电和微波放电等。等离子体催化氨合成过程中,气相存在高能电子,可通过碰撞产生活性物种以超过传统热催化的速率参与到表面化学反应过程中,从而克服反应动力学限制,使催化反应在更温和的条件下进行。


近年来等离子体催化氨合成的研究已经从探索性和试错的方法转变为基于实验和建模工作的更具体的理解。等离子体合成氨的理论能源成本为0.25 MJ/mol NH3(热催化0.48 MJ/mol NH3),这说明了在小型工厂中,通过可再生能源以低成本高效生产氨的潜力。


等离子体催化氨合成反应的机理理解


在目前的研究背景下,根据等离子体条件和所选择的催化剂材料,会导致不同的等离子体活性物质,并影响催化反应的进程,我们在设计催化剂时可以参考的策略如下:


(1)在具有低解离程度和高激发程度(振动或电子)的等离子体中,等离子体活化的作用是降低受解离吸附限制的过程的工作温度。在大多数情况下,负载Co、Ni和Rh催化剂在测试催化剂中应用最多。这类金属比热催化氨合成的经典Fe和Ru催化剂具有更少的氨脱附限制。催化剂的粒径和孔隙度方面的物理状态会影响吸附概率,也可能通过改变放电性能来增加转化率。等离子体增加金属在载体上的分散的能力也将提高催化性能和改变放电的性质。


(2)在解离程度较高的等离子体中,理想的催化剂通常与热催化中使用的催化剂有很大的不同。等离子体产生的自由基不需要在表面上解离,因为解离已经在等离子体中发生了。采用铁电材料的球团填充电极间间隙可以大幅降低工作电压,从而提高该过程的整体能源效率。然而,在这种情况下使用传统的催化剂会导致产物氨气的分解,利用分子筛或易结合氨气的材料及时将产物收集起来,有利于促进反应正向进行,提高整体催化速率。


等离子体催化氨合成反应的催化剂和反应器设计


由于等离子体催化体系中包含了高能电子、活性分子和自由基等复杂成分,导致等离子体催化合成氨的机理解释挑战性极大,其理论基础研究还需要进一步加强。除此之外,产生稳定的等离子体在目前的技术水平仍需要消耗较多电能,真正将非热等离子体催化大规模应用于合成氨需要对电能转化有更高的要求,发展如脉冲放电等更高效的等离子体电源是很关键的技术研究,设计特殊的催化剂微观结构将放电集中在催化剂和气体直接接触的界面是另一个有待发展的研究领域,在未来通过工艺和技术优化达到低能耗产氨的目标十分值得期待。


总结与展望


氨合成的未来发展轨迹将取决于对可持续发展和环境因素的追求。等离子催化和光(热)催化等新兴技术因其在更温和的条件下促进氨合成的潜力而备受关注,从而有望显著减少能源足迹。然而,前进的道路上并非没有挑战。这些新技术的工业可扩展性需求,以及对能源效率的必要改进仍然是关键的障碍。责任在于继续开展研究,致力于完善催化剂设计、阐明反应机制和优化系统配置。正是在应对这些挑战的过程中,合成氨技术的未来才有可能取得最具变革性的进展,并预示着一个可持续和高效的合成氨生产时代的到来。


研究团队1

(请上下滑动查看)

通讯作者 母晓玮:2022年在吉林大学无机合成与制备化学国家重点实验室获得博士学位。现为中国科学院长春应用化学研究所博士后研究员。主要研究方向包括纳米催化材料和惰性小分子催化。


通讯作者 李路:吉林大学化学学院,无机合成与制备化学国家重点实验室,唐敖庆卓越教授(A岗)、博士生导师,国家“万人计划”领军人才,国家级“四青”人才。2006年和2012年分别获吉林大学学士和博士学位。2013-2017年在加拿大麦吉尔大学从事博士后研究。主要研究方向包括惰性小分子(如CH4、N2和烷烃)的光驱动活化和低碳转化技术,及热催化氨合成及分解转化技术。在Nat. Energy,Nat. Protocols,Nat. Commun.,Chem,J. Am. Chem. Soc.,Angew. Chem. Int. Ed. 等国际著名学术期刊发表论文60余篇。


第一作者 李嘉阳:2020年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为非热等离子体催化合成氨。


第一作者 熊晴川:2022年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为光热催化合成氨。

论文信息

发布期刊 ChemSusChem

发布时间 2024年3月12日

文章标题 Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies

(https://doi.org/10.1002/cssc.202301775)


如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 170浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 44浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 116浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦