吉林大学李路团队:氨的可持续合成,从哈伯法到创新催化策略的转变

果壳硬科技 2024-04-16 14:00

欢迎星标 果壳硬科技

氨是一种关键的化学原料和潜在的氢能载体,其高效合成是其利用的关键步骤。追求“绿色氨”生产,取代集中式、高能耗、重环境污染的Haber-Bosch工艺,在较温和的条件下使用可再生能源,是人类可持续发展的前沿技术和关键目标。近年来,氨合成方法的创新,如光化学、电化学和低温等离子体,以及新的催化剂如电子化合物、氢化物、稀土氮化物等,大大扩大了氨合成研究的深度和范围。


氨的气相合成与应用


吉林大学李路团队总结了以N2、H2为原料的气-固相氨合成过程的最新进展和挑战:包括低温热催化合成氨、光催化和光热催化合成氨以及等离子体催化合成氨。气-固相合成氨不仅能实现绿色氢的有效利用,而且为其储存和运输提供了一个可行的解决方案。


作者综述了最近开发的先进的多相催化剂和外场驱动在合成氨过程中的作用方式,确定了催化剂设计和外场刺激的协同作用规律,为克服传统氨合成中固有的热力学和动力学限制提供深刻的见解。在回顾了已经取得的阶段性成果后,作者从理论和实际应用的多个角度突出TRL和挑战,并展望了未来的工业应用前景,旨在给读者提供较为系统和科学的合成氨研究思路,促进向“绿色氨”生产的转变。


相关工作以“Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies”为题在ChemSusChem上发表论文。需要注意的是,由于催化机理和反应途径的差异,对液相光催化和电催化固氮的研究超出了本综述的范围。



热催化合成氨


在过去的一个世纪里,热催化氨合成的研究主要集中在降低Haber-Bosch(H-B)工艺的温度和压力上。N2分子的化学稳定性源于其较强的N≡N键能(945.33 kJ/mol)和较低的电子亲和性(-1.9 eV)。因此,在热驱动的催化过程中打破N≡N键通常需要苛刻的反应条件。根据Sabatier原理,理想的催化剂应该以中等强度吸附反应物(或中间产物):强度足以激活反应物,但又不至于阻碍产物解吸。由于吸附在过渡金属表面的 NHx(x = 0、1、2)物种的吸附能EN与反应过渡态能垒EN-N之间的线性制约关系(即Brønsted-Evans-Polanyi关系),大大限制了过渡金属氨合成催化剂的发展。


为了规避合成氨反应线性制约关系实现低温低压温和条件下合成氨的常用策略可以总结如下: 

(1)通过将电子传递给过渡金属, 反馈到N2的π*反键轨道, 从而加快N2的解离吸附。

(2)通过在催化体系中引入第二个非过渡金属组分(碱/碱土金属氢化物),使部分或所有中间物种吸附在非过渡金属的活性中心上。

(3)结合Mars-van Krevelen机制,构建易于吸附并激活N2的氮空位载体和用于产生氢原子的过渡金属双位点协同催化剂,使用不同的位点激活两种反应物,能长时间高效率催化N2和H2反应产NH3,有效地避免了产物在过渡金属位点难脱附的弊端。


热催化氨合成反应的机理理解和催化剂设计


尽管如此,目前研究中的各种不同类型的温和条件合成氨催化剂并没有进行进一步的扩大化实验,没有在高空速和压力的工业生产条件下进行稳定性与催化速率的研究。新兴催化剂的生产工艺与生产成本也较复杂与高昂,为了实现更温和条件下的固氮反应,在设计过程中需要更加注重催化剂的可放大性与实际生产的相关性。


光催化与光热催化合成氨


光催化和光热催化合成氨能利用来源广泛的太阳能激活惰性N2分子,从而为在环境条件下合成氨提供了理想途径。在光照条件下,半导体光催化剂受外部刺激,产生光激发电子-空穴对。电子跃迁到导带,而空穴则留在价带。光生电子具有还原能力,通过光催化剂表面的催化活性中心(如金属或阴离子空位)进入表面吸附的 N2 的反键 π* 轨道,从而还原和活化N2分子。


与高温多相催化中的传统解离途径不同,光催化合成氨通常被认为是一种低能耗的缔合途径。在这种缔合途径中,吸附的N2最初部分氢化,产生 N=NH 中间体。该中间体继续接受电子和质子,导致 N≡N 键断裂,逐步还原成 NH3。这一过程可以通过远端机制或交替机制进行,具体取决于质子和电子的反应顺序以及催化剂表面的化学环境。理想的光催化剂应能最大限度地利用入射太阳光产生高能光电子,并建立高效的电子传递通道,从而促进催化剂与表面吸附的 N2 分子之间的快速光激发电子传递。


光催化氨合成反应的机理理解和催化剂设计


光(热)催化氨合成过程的能源可以完全来自于太阳光,反应条件温和,具有很大潜力,但制约其实现规模化生产的主要原因是反应速率过低,光能到化学能的转换效率低。究其光化学反应本质,生产过程的时间敏感性强,受到昼夜交替的影响。


为了解决其生产效率低的问题不仅需要从催化剂的设计角度,设计高效廉价的光催化剂,还需要在反应器设计以及光源上进行多角度的研究。除提升催化剂本征反应活性之外,提升技术成熟度,开发更高效的反应器也是重要研究方面。可以通过菲涅尔透镜等聚光手段将来自太阳的光能增强到完成反应的光强。其时间敏感性可以通过研究更高效的人工光源改进,将研究中最常使用的Xe灯替换为更加廉价,更便于大规模制造的LED光源。


等离子体催化合成氨


等离子体是物质存在的第四种状态,由电子、各种离子、分子和激发态物种组成。通过对气体施加能量而产生的,产生方式包括火花放电、电晕放电、介质阻挡放电和微波放电等。等离子体催化氨合成过程中,气相存在高能电子,可通过碰撞产生活性物种以超过传统热催化的速率参与到表面化学反应过程中,从而克服反应动力学限制,使催化反应在更温和的条件下进行。


近年来等离子体催化氨合成的研究已经从探索性和试错的方法转变为基于实验和建模工作的更具体的理解。等离子体合成氨的理论能源成本为0.25 MJ/mol NH3(热催化0.48 MJ/mol NH3),这说明了在小型工厂中,通过可再生能源以低成本高效生产氨的潜力。


等离子体催化氨合成反应的机理理解


在目前的研究背景下,根据等离子体条件和所选择的催化剂材料,会导致不同的等离子体活性物质,并影响催化反应的进程,我们在设计催化剂时可以参考的策略如下:


(1)在具有低解离程度和高激发程度(振动或电子)的等离子体中,等离子体活化的作用是降低受解离吸附限制的过程的工作温度。在大多数情况下,负载Co、Ni和Rh催化剂在测试催化剂中应用最多。这类金属比热催化氨合成的经典Fe和Ru催化剂具有更少的氨脱附限制。催化剂的粒径和孔隙度方面的物理状态会影响吸附概率,也可能通过改变放电性能来增加转化率。等离子体增加金属在载体上的分散的能力也将提高催化性能和改变放电的性质。


(2)在解离程度较高的等离子体中,理想的催化剂通常与热催化中使用的催化剂有很大的不同。等离子体产生的自由基不需要在表面上解离,因为解离已经在等离子体中发生了。采用铁电材料的球团填充电极间间隙可以大幅降低工作电压,从而提高该过程的整体能源效率。然而,在这种情况下使用传统的催化剂会导致产物氨气的分解,利用分子筛或易结合氨气的材料及时将产物收集起来,有利于促进反应正向进行,提高整体催化速率。


等离子体催化氨合成反应的催化剂和反应器设计


由于等离子体催化体系中包含了高能电子、活性分子和自由基等复杂成分,导致等离子体催化合成氨的机理解释挑战性极大,其理论基础研究还需要进一步加强。除此之外,产生稳定的等离子体在目前的技术水平仍需要消耗较多电能,真正将非热等离子体催化大规模应用于合成氨需要对电能转化有更高的要求,发展如脉冲放电等更高效的等离子体电源是很关键的技术研究,设计特殊的催化剂微观结构将放电集中在催化剂和气体直接接触的界面是另一个有待发展的研究领域,在未来通过工艺和技术优化达到低能耗产氨的目标十分值得期待。


总结与展望


氨合成的未来发展轨迹将取决于对可持续发展和环境因素的追求。等离子催化和光(热)催化等新兴技术因其在更温和的条件下促进氨合成的潜力而备受关注,从而有望显著减少能源足迹。然而,前进的道路上并非没有挑战。这些新技术的工业可扩展性需求,以及对能源效率的必要改进仍然是关键的障碍。责任在于继续开展研究,致力于完善催化剂设计、阐明反应机制和优化系统配置。正是在应对这些挑战的过程中,合成氨技术的未来才有可能取得最具变革性的进展,并预示着一个可持续和高效的合成氨生产时代的到来。


研究团队1

(请上下滑动查看)

通讯作者 母晓玮:2022年在吉林大学无机合成与制备化学国家重点实验室获得博士学位。现为中国科学院长春应用化学研究所博士后研究员。主要研究方向包括纳米催化材料和惰性小分子催化。


通讯作者 李路:吉林大学化学学院,无机合成与制备化学国家重点实验室,唐敖庆卓越教授(A岗)、博士生导师,国家“万人计划”领军人才,国家级“四青”人才。2006年和2012年分别获吉林大学学士和博士学位。2013-2017年在加拿大麦吉尔大学从事博士后研究。主要研究方向包括惰性小分子(如CH4、N2和烷烃)的光驱动活化和低碳转化技术,及热催化氨合成及分解转化技术。在Nat. Energy,Nat. Protocols,Nat. Commun.,Chem,J. Am. Chem. Soc.,Angew. Chem. Int. Ed. 等国际著名学术期刊发表论文60余篇。


第一作者 李嘉阳:2020年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为非热等离子体催化合成氨。


第一作者 熊晴川:2022年获得吉林大学化学学士学位,目前是吉林大学无机合成与制备化学国家重点实验室的博士研究生。主要研究方向为光热催化合成氨。

论文信息

发布期刊 ChemSusChem

发布时间 2024年3月12日

文章标题 Recent Advances in Ammonia Synthesis: From Haber-Bosch Process to External Field Driven Strategies

(https://doi.org/10.1002/cssc.202301775)


如果你是投资人、创业团队成员或科研工作者,对果壳硬科技组织的闭门会或其它科创服务活动感兴趣,欢迎扫描下方二维码,或在微信公众号后台回复“企业微信”添加我们的活动服务助手,我们将通过该渠道组织活动——


果壳硬科技 果壳旗下硬科技服务品牌,致力于连接科学家与投资人、创业者,在新一轮技术革命和资本流动中,做最懂硬核科技的团队。
评论
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 52浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 124浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 78浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 100浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦