相比于多晶半导体,非晶体系具有诸多优势,如低成本、易加工、高稳定性以及大面积制造均匀等。然而,传统的非晶氢化硅因电学性能不足而急需探索新材料。自2004年首次基于非晶N型铟鎵锌合金氧化物薄膜晶体管(TFT)报道以来(Nature 432, 488, 2004),极大推动了半导体电子学和新一代信息显示技术的发展。然而,目前研发性能相当的非晶P型半导体面临着重大挑战,严重阻碍了新型电子器件研发和大规模N-P互补金属氧化物半导体(CMOS)技术的发展。传统氧化物半导体因高局域态价带顶和自补偿效应,导致空穴传输效率极差,难以满足应用需求。科研人员因此投入大量精力开发新型非氧化物P型半导体,但目前这些新材料只能在多晶态下展现一定的P型特性。此外,这些材料还存在稳定性和均匀性等固有缺陷,且难以与现有工业制程工艺兼容。在过去二十余年里,领域科研人员不断改进和优化“价带轨道杂化理论”,尝试实现高空穴迁移率的P型氧化物基半导体,但收效甚微。这也导致领域专家普遍认为,实现高性能的非晶P型半导体和CMOS器件是一项“几乎不可能完成的挑战”。
2024年4月10日,电子科技大学基础与前沿研究院刘奥教授和电子科技大学物理学院朱慧慧研究员、韩国浦项科技大学Yong-Young Noh教授合作的最新研究成果以“Selenium alloyed tellurium oxide for amorphous p-channel transistors”为题上线 Nature“加速预览”(Accelerated Article Preview,AAP)。该成果由电子科技大学和韩国浦项科技大学共同合作完成。电子科技大学基础与前沿研究院刘奥教授为论文第一作者和通讯作者,电子科技大学物理学院朱慧慧研究员和韩国浦项科技大学Yong-Young Noh教授为论文共同通讯作者。AAP作为Nature杂志的提前在线发布形式之一,是对期刊编辑、同行科学家认为的具有重大科学意义研究成果的加速报道。
图1. 非晶Te基薄膜的表征
图2. 理论解析Te基复合材料的原子和能带结构
图3. 基于Te基复合非晶P沟道TFT器件的电学测试
图4. 集成的CMOS器件电学测试
综上,该碲基材料体系在性能上远优于已报道的其他新兴非晶P型半导体材料,并展现出卓越的经济性、稳定性、可扩展性和加工性,其制备工艺与工业生产线和后端集成技术完美兼容。这种复合相策略为设计新一代稳定的非晶P型半导体材料带来了新的启发。这项研究将开启P型半导体器件的研究热潮,并在建立商业上可行的非晶P沟道TFT技术和低功耗CMOS集成器件迈出了重要的一步。
原文链接
https://www.nature.com/articles/s41586-024-07360-w
来源: 化学与材料科学
2024半导体活动推荐
2024(第八届)国际碳材料大会暨产业博览会
2024先进半导体产业博览会暨第二届先进电子材料创新大会