杨德仁院士团队打破国际垄断!2英寸!晶圆级(010)氧化镓单晶衬底!

原创 DT半导体材料 2024-04-11 21:02

CarbonSemi

论坛时间:2024年4月25-26日

论坛地点:浙江·宁波 宁波香格里拉酒店(浙江省宁波市鄞州区豫源街88号)

论坛规模:500人

论坛主席:江 南,中国科学院宁波材料技术与工程研究所研究员


扫描二维码,立即报名

 01    2英寸!打破国际垄断!

2024年4月,杭州镓仁半导体有限公司正式推出2英寸晶圆级(010)氧化镓单晶衬底,在(010)衬底的研发生产方面再创新高,助力国内氧化镓相关产业摆脱国际垄断,同时实现高质量发展。

2英寸晶圆级(010)氧化镓单晶衬底

据了解,杭州镓仁半导体有限公司成立于2022年9月,是一家专注于氧化镓等宽禁带半导体材料研发、生产和销售的科技型企业。公司开创了氧化镓单晶生长新技术,拥有国际、国内发明专利十余项,突破了美国、德国、日本等西方国家在氧化镓衬底材料上的垄断和封锁。镓仁半导体立足于解决国家重大需求,将深耕于氧化镓上游产业链的持续创新,努力为我国的电力电子等产业的发展提供产品保障。

据网页显示,该公司氧化镓材料的研究,起源于浙江大学硅材料国家重点实验室。2018年,在学术带头人杨德仁院士的设计和指导下,镓仁半导体创始人张辉与团队成员在一起开始研发氧化镓单晶材料,仅隔两年,就在浙江大学杭州国际科创中心开展了氧化镓单晶小试。

2022年5月,科创中心先进半导体研究院就成功突破2英寸生长技术,制备了直径2英寸的氧化镓晶圆,为实现氧化镓批量生产打下坚实基础。

2023年6月,镓仁半导体有限公司宣布,成功制备了高质量4英寸氧化镓单晶,并完成了4英寸氧化镓晶圆衬底技术突破。该产品是使用科创中心首席科学家杨德仁院士团队自主研发的铸造法完成的。

2023年,镓仁半导体完成数千万天使轮融资。本轮由蓝驰创投领投,禹泉资本跟投。融资将用于强化团队、加速氧化镓衬底材料新方法及中试线研发。

2023年11月,镓仁半导体荣获“浙江省科技型中小企业”认定。这是浙江省科学技术厅对公司坚持走自主研发、技术创新的有力肯定。

2024年3月20日,镓仁半导体联合浙江大学杭州国际科创中心先进半导体研究院、硅及先进半导体材料全国重点实验室,采用杨德仁院士团队自主开创的铸造法成功制备了高质量6英寸非故意掺杂及导电型氧化镓(β-Ga2O3)单晶,并加工获得了6英寸氧化镓衬底片——成为国内首个掌握6英寸氧化镓单晶衬底制备技术的产业化公司。

2024年4月,镓仁半导体再次推出新产品——2英寸晶圆级(010)氧化镓半绝缘单晶衬底,并实现了2英寸(010)氧化镓单晶衬底的自主量产,打破了国际垄断。

镓仁半导体新品发布线

 02    6英寸非故意掺杂氧化镓单晶!

另外,值得注意的是,杭州镓仁使用的氧化镓晶体并加工衬底制造方法,是铸造法。而不是业界最主流的导模法EFG。

氧化镓产业链包括衬底制备、外延层生长、器件研制以及下游应用环节。高质量、低成本的氧化镓单晶衬底是整个产业链的关键,目前全球只有一家公司可稳定供货。其采用的是导模法生产和制备氧化镓衬底。

用业界主流导模法进行生产氧化镓,需要在1800℃左右的高温和含氧环境下进行晶体生长,对生长环境要求很高,需要耐高温、耐氧,无污染等特性的材料做坩埚。目前只有贵金属铱Ir(Iridium)适合盛装氧化镓熔体。

然而由于导模法需要大量的铱金属,导致氧化镓晶圆价格高居不下;同时导模法存在大的温度梯度,使得氧化镓的质量难以进一步提升,严重阻碍了其器件的迭代研发。镓仁半导体开创了新的氧化镓单晶生长技术——铸造法。该方法在成本控制、尺寸放大、质量提升以及智能制造等方面具有极其明显优势。

据了解,铸造法是科创中心首席科学家杨德仁院士团队自主研发的、适用于氧化镓单晶生长的新型熔体法技术,其生长的氧化镓晶圆具有两个显著优势,一是由于采用了熔体法新路线,显著减少了贵金属铱的使用量,使得氧化镓生长过程不仅更简单可控,而且成本也更低,具有更广阔的产业化前景;二是使用该方法生长出的氧化镓为柱状晶,可满足不同使用场景的需求。该方法有望推动氧化镓材料和器件产业的发展。

镓仁半导体创始人张辉在采访中说到,“铸造法还有一个显著的产业化优点,技术路线和工艺相对简单、流程也短……这些均有利于实现自动控制。可以说,随着工艺的成熟,可大幅降低生产中的人力成本。并且,氧化镓有可能像硅单晶材料一样,做出高质量大尺寸的单晶衬底,为了实现这一目标,还需要解决晶体中的应力问题。”

按照张辉的战略规划,氧化镓2英寸、4英寸、6英寸,以致8英寸衬底……这些都是镓仁半导体在今后需要突破、实现的目标。

 02    氧化镓:“镓族”新势力

随着2018年特斯拉采用碳化硅(SiC)、2020年小米在快充上使用氮化镓开始,宽禁带材料碳化硅、氮化镓获得市场认可迎来发展机遇,并逐渐从新能源车、消费电子等热门场景向更多拓展场景探索。在宽禁带半导体发展得如火如荼之际,氧化镓、氮化铝、金刚石等超宽禁带半导体材料也开始受到关注。
其中,氧化镓的出现也带来了新风向作为超宽禁带半导体,其带隙为4.5-4.9eV(不同晶相带隙不同),高于碳化硅的3.25eV和氮化镓的3.4eV,确保了其抗辐照和抗高温能力,可以在高低温、强辐射等极端环境下保持稳定的性质。而其高击穿场强的特性则确保了制备的氧化镓器件可以在超高电压下使用,有利于提高载流子收集效率。


日本富士经济预测,未来10年氧化镓及器件的年复合增长率将超过50%,在高功率、高电流、高压器件领域拥有巨大优势,同时在中压功率器件及射频器件方面将对目前SiC,GaN和Si IGBT产生有力竞争,其在节能、性能改善、体积缩小等方面拥有核心优势。

业内也普遍认为,氧化镓有望替代碳化硅和氮化镓成为新一代半导体材料的代表目前,氧化镓已开启产业化。NCT预测氧化镓晶圆的市场到2030年度将扩大到约590亿日元(约合4.7亿美元)规模,而从日本富士经济对宽禁带功率半导体元件的全球市场预测来看,2030年氧化镓功率元件的市场规模将会达到1542亿日元(约合12.2亿美元),这个市场规模要比氮化镓功率元件的规模(约合8.6亿美元)还要大

 03    国际布局与发展现状

从区域发展格局看,氧化镓目前主要是中日美三国在进行研究。
日本是最早在氧化镓领域获得突破的国家。目前已在衬底—外延—器件等产业链环节具备全球领先能力,如日本 NCT 和 FLOSFIA 两家公司引领着日本氧化镓产业发展。早在2012年,日本国家信息与通信技术研究所NICT发布了首个单晶β-氧化镓晶体管,当时震惊了整个半导体器件行业。目前,NCT在全球氧化镓衬底市场中占据绝对主导地位——供应全球几乎100%的氧化镓衬底。京都大学投资的Flosfia,和田村制作所投资的Novel Crystal,都是全球最领先的Ga2O3供应商。
美国、德国、法国等也在加紧氧化镓产品的研究和竞争,如美国的空军研究实验室、海军实验室和宇航局;德国的莱布尼茨晶体生长研究所、以及法国圣戈班等都已加入氧化镓材料及器件研发的浪潮中。
我国,氧化镓研发起点比较晚,但进展算还比较快。
2018年,中电科46所创造了国内的氧化镓4英寸衬底的记录。
2022年5月,浙大杭州科创中心首次采用新技术路线成功制备2英寸 (50.8 mm)的氧化镓晶圆,而使用这种具有完全自主知识产权技术生产的2英寸氧化镓晶圆在国际上为首次。
2020年成立的北京铭镓半导体公司,在2022月12月9日官宣,使用导模法成功实现了2英寸衬底的量产,并在4英寸衬底技术上有所突破。
2023年2月,我国首颗6英寸氧化镓单晶被成功制备,中国电科46所成功构建了适用于6英寸氧化镓单晶生长的热场结构,突破了6英寸氧化镓单晶生长技术,可用于6英寸氧化镓单晶衬底片的研制。
2023年初,中国科大国家示范性微电子学院教授龙世兵课题组首次研制出氧化镓垂直槽栅场效应晶体管。而就此前不久,龙世兵课题组相关研究论文成功被世界顶级技术论坛IEEE IEDM大会接收,这也是中国科大首次以第一作者单位在IEEE IEDM上发表论文。
2023年3月,西安邮电大学由电子工程学院管理的新型半导体器件与材料重点实验室陈海峰教授团队成功在8吋硅片上制备出了高质量的氧化镓外延片,这一成果标志着该校在超宽禁带半导体研究上取得重要进展。
目前,我国氧化镓研究团队较多,主要有浙大、中电研究所、山大、南大、西安电子科技大学、上海微系统所、复旦大学、北邮、上海光机所等。企业方面,据不完全统计,2022年以来多家上市公司纷纷披露氧化镓相关业务研发情况,涉及公司包括中航机电、新湖中宝、中钢国际、蓝晓科技、南大广电、阿石创等。而初创企业方面,以镓仁半导体、杭州富加镓业、北京铭镓半导体、北京镓族科技、深圳进化半导体等已经开始崭露头角。

在政策层面,我国对氧化镓的关注度也不断增强。早在2018年,我国已启动了包括氧化镓、金刚石、氮化硼等在内的超宽禁带半导体材料的探索和研究。2022年,科技部将氧化镓列入“十四五”重点研发计划。

散热能力不足是氧化镓的弊端,如何绕开这个弊端,充分发挥它在功率器件的优势,是值得关注的发展方向。目前许多单位开展将转移晶圆级氧化镓薄膜于高导热衬底的研究,如转移到高导热率碳化硅和碳基衬底上异质集成制备氧化镓MOSFET器件,近日也出现了将氧化镓与金刚石进行键合的消息。另外,大尺寸低缺陷氧化镓单晶的制备方法以及高表面质量氧化镓晶片的超精密加工技术是实现氧化镓半导体器件工业应用的主要瓶颈。

氧化镓的研发仍在路上!

镓仁半导体创始人张辉在采访中也提到从浙江大学本科和博士毕业之后,一直在晶体生长方向潜心研究。“当看到中国半导体产业受到封锁、限制,决心通过科技成果转化,做出一款能满足国家重大需求的半导体材料产品,以解决卡脖子难题。“氧化镓材料的研发绝不能停留于实验室,必须要走出去,实现产业化。”

 04    Carbonsemi 2024邀您共同加入碳“芯”团队
4月25-26日,DT新材料“助力碳基半导体产业化进程”为主题,联合宁波材料所、甬江实验室、宁波工程学院等团队,在宁波,以“助力碳基半导体产业化进程为主题,共同主办第四届碳基半导体材料与器件产业发展论坛(CarbonSemi 2024),将针对金刚石、石墨烯、碳纳米管等新型半导体材料如何走出实验室进行详细探讨!
CarbonSemi 2024重点聚焦柔性电子、高功率器件、微纳加工、异质融合等方向,邀您加入碳“芯”团队,共同开拓碳基材料在电子信息领域产业应用具有无限潜力!

扫描二维码,了解第四届碳基半导体材料与器件产业发展论坛

另外本次参加CarbonSemi2024,并带产品展示的企业有:

宁波晶钻科技股份有限公司
山东力冠微电子装备有限公司
宁波鲍斯能源装备股份有限公司
北京朗润达科贸有限公司
铂世光(上海)技术有限公司
广州梦钻科技有限公司
上海麦曲能源科技有限公司
深圳超磁机器人科技有限公司
浙江飞越机电有限公司
福禄克测试仪器(上海)有限公司
北京妫水科技有限公司
安徽明辨电子科技有限公司
深圳摩极科技有限公司
佛山市海光智能科技有限公司
河北普莱斯曼金刚石科技有限公司
北京特思迪半导体设备有限公司
广州三义激光科技有限公司
北京左文科技有限公司
常州英诺激光科技有限公司
天津中科晶禾电子科技有限责任公司
无锡鑫磊精工科技有限公司
宁波大艾激光科技有限公司
精工锐意科技(河南)有限公司
佛山市科猛创易科技有限公司
河南飞孟金刚石股份有限公司

4月25-26日,宁波见~
CarbonSemi 2024


2024半导体活动推荐


2024(第八届)国际碳材料大会暨产业博览会

2024先进半导体产业博览会暨第二届先进电子材料创新大会


DT半导体材料 聚焦于半导体材料行业的最新动态
评论
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 222浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦