人工智能热潮来袭,硅光子技术迎来杀手级应用?

原创 MEMS 2024-04-01 00:02

过去十年来,通用云和互联网应用(如视频流媒体、社交网络、互联网搜索引擎和电子商务平台等)推动了数据中心流量的指数级增长。近年来,利用大语言模型(LLM)进行人工智能(AI)训练和推理的AI及机器学习(ML)的兴起,为传统的数据中心市场提供了巨大的增长前景。回看大语言模型在过去几年中的发展,就不难理解这一市场趋势的变革性影响。迄今为止,这些模型的建模参数呈超指数增长,数据量的摄取量也成正比。尽管生成式AI仍处于早期阶段,但其应用已扩展到多个领域,包括机器人、自动化设计、先进增强/虚拟现实(AR/VR)、医学、化学以及金融等。所有这些市场的整合应用推动高性能计算和数据中心领域进入了一个全新的技术经济范式。

未来几年,AI专用服务器的市场份额将直线上升,从2022年几乎可以忽略不计,到2027年预计将占据整体市场营收的50%(即900亿美元)。


大语言模型演进时间线及其参数数量的相对增长(上图)。AI服务器和通用服务器的营收增长趋势,以及2022年~2027年AI服务器市场份额的相对变化(下图)。

数据间尤其是数据中心内流量的快速增长,推动了对高速可插拔光收发器的需求,目前这种收发器正在从100 Gbps向400 Gbps过渡。此外,已有800 Gbps设备于2023年开始出货,1.6 Tbps可插拔模块目前也可预送样。

互联与人工智能革命

可插拔光收发器用作服务器之间的数据互连,在AI/移动通信应用日益增长的需求中发挥着重要作用。在数据中心,它们在路由器和叶脊架构交换机之间传输和接收数据。具体到云AI/ML应用,它们连接交换机与加速器服务器(即GPU和CPU机架)。此外,这些收发器还可分别通过城域网、长途网和海底网络,在数据中心之间提供短距离、中距离或长距离连接。

一般来说,光收发器必须满足三个同等重要的要求:高速度、低功耗以及最低的成本结构。

功耗方面,数据中心服务器集群的功率密度在50 kW到100 kW之间,以满足新兴的AI要求。然而,2023年~2028年期间,AI在数据中心的功耗预计将增加一倍以上。


数据中心功耗变化趋势

此外,400 GbE可插拔收发器500 m至2 km链路距离的功耗约为12 W,而800 GbE可插拔收发器的这一数字通常约为16 W。随着数据量的增长,显然需要功耗更低、速度更快的光收发器,这促使可插拔收发器的外形尺寸在不同的架构中不断发展。值得注意的是,可插拔收发器内部的数字信号处理(DSP)是功耗的主要来源之一。这促使业界开始探索新型收发器设计,如线性驱动可插拔光学器件(LPO)、半重定时线性光学器件(HALO)和共封装光学器件(CPO),以利用更先进的器件设计和光电子协同集成,使未来的可插拔收发器能够直接驱动运行,而无需独立的专用DSP组件。

LPO与传统光模块之间的主要区别在于线性驱动(或直接驱动)。LPO采用基于可插拔设计的传统封装形式,使收发器的维护更加方便。LPO收发器,顾名思义,采用线性直接驱动技术,取消了光模块中的DSP和时钟数据恢复芯片。因此,与传统的可插拔光模块相比,这些模块的功耗降低了约50%。此外,由于取消了DSP,并使用高线性跨阻抗放大器和具有均衡器功能的驱动芯片,LPO还进一步缩短了信号恢复时间和延迟。

HALO是介于DSP可插拔模块和LPO之间的最新技术。它解决了无DSP LPO固有的弱点,包括互操作性问题、链路责任以及相对无法解决的问题。

CPO越来越被视为光互连技术自然演进的重要一步,因为它们有可能解决传统光学可插拔技术所面临的带宽和能效挑战。CPO技术通过将光引擎芯片直接与专用集成电路(ASIC)或其它多芯片处理模块共封装到交换机或加速器模块中来实现上述改进。这是通过先进封装工艺实现的,充分利用了电子器件(包括先进的数字功能)和光子器件的协同设计和集成。通过ASIC或其它处理单元(如CPU、GPU和/或存储芯片)直接驱动光学引擎,可以降低延迟和整体功耗。


光互连架构演进,从可插拔外形到更先进的板载光学器件、共封装光学器件和光学I/O引擎。光学I/O引擎是实现数字电子器件和光子器件协同集成的终极步骤。

赋能云AI

在AI服务器集群和超级集群中,GPU与网络端口相连,使其可以与其它机架和加速器服务器中的GPU通信。为了最大限度地提高GPU的使用效率,网络速度必须跟上GPU的处理和内存存储速度。这对于AI应用来说极为重要,因为AI应用通常需要实时处理并分析大数据集。

为了满足GPU或xPU(即其它GPU、CPU或存储芯片)之间短距离到长距离连接的需求,硅光子CPO引擎日益被视为这项工作的关键技术。它们可以在计算单元和本地存储器之间以及整个AI结构中实现更灵活的系统网络设计,从而在成本、性能和功耗方面实现收发器功能相对传统可插拔技术的全面改进。已有多家AI公司将集成硅光子技术视为光互连架构面向下一代AI云计算基础设施的自然演进步骤。

这种演进的基础是先进的材料平台,集成光子解决方案将在这些平台上设计和制造。目前最成熟的平台是绝缘体上硅(SOI),它提供了固有的物理和机械特性,有利于多种硅光子学应用,尤其是在光网络领域。


光子SOI衬底结构,以及该技术对硅光子器件、电路及子系统的相应价值主张

这些优势的关键在于提高SOI衬底顶部硅器件层晶圆到晶圆(W2W)和晶圆内(WiW)均匀性和表面粗糙度。此外,块体顶部硅层的整体光学特性(如缺陷、表面状态和作为光散射中心的体微缺陷),对于硅光子元件的最佳良率和性能也非常重要。这还能确保制造出来的器件和电路尽可能接近计算机辅助设计(CAD)工具和图形数据流(GDS)文件中的设计参数。

光损耗是评估衬底材料质量的关键基准,因为它预示着无源器件的整体性能水平以及后续的前端光学良率。随着先进超高速收发器、板载光学器件(特别是CPO)的兴起,元件密度和整体电路复杂性不断提高,衬底材料质量与大面积电路的关系日益密切。

硅光子SOI晶圆直径有200 mm和300 mm两种。更大直径的衬底可以容纳更多的芯片制造,同时能够更严格地控制顶部硅膜厚度的WiW和W2W不均匀性。对于SOITEC的200 mm直径晶圆,目前最先进的顶部硅层厚度WiW不均匀性与前几代产品相比降低了70%以上。此外,顶部硅膜平均厚度W2W变异性也得到了极大改善,从而提高了晶圆级无源光学性能,并在量产时提高了前端良率。


SOITEC两代200 mm SOI晶圆(Photon 200和Photon Plus 200)上测量的顶部硅平均厚度不均匀性。该研究在200多片晶圆上分别采集了17个测量点。厚度测量单位:埃(1/10纳米)。

法国CEA-Leti在其200 mm硅光子工艺设计套件和测试线上进行的光学测试证实了这一趋势。研究数据表明,最先进的SOI技术在硅顶层薄膜不均匀性和缺陷密度方面达到了非常先进的目标。这使得目前的200 mm SOI晶圆能够显著降低损耗(条状波导为1~1.4 dB/cm),并降低晶圆上传播损耗中值的色散(低至0.09 dB/cm)。


SOITEC Photon/Photon Plus 200的光学性能

应用于300 mm SOI衬底的类似基准测试评估了一家SOITEC商业代工合作伙伴制造的器件。在测试过程中,最先进的SOI晶圆在O波段的单模TE偏振波导损耗介于0.5~0.65 dB/cm。


1310 nm波长区域(左)带状、横电(TE)偏振配置的单模波导传播损耗基准(单位:dB/cm)。

面向硅光子应用的先进封装

先进封装和后道(BEOL)技术是推动硅光子路线图发展的关键因素,特别是对于更先进的收发器设计和CPO多芯片模块集成。例如,2.5D和3D CoWoS封装或异构集成方案,对于为日益密集且复杂的硅光子芯粒提供电力以及光纤到芯片的光连接是非常必要的。然而,先进的BEOL和模块封装是目前硅光子技术中的主要良率障碍。

SOI衬底将在应对这些挑战方面发挥另一个重要作用。事实上,从SOI晶圆的操作来看,其潜力远不止支持三层堆叠。先进的SOI加工技术可产生卓越的材料化学物理性能,为新型SOI硅晶圆提供所需要的机械坚固性,使其能够经受激进的热退火循环,以及晶圆代工厂先进硅光子加工中典型的更厚的多层金属BEOL技术。此外,操作晶圆还能使代工厂和设计人员具有足够的灵活性来实施硅通孔(TSV)技术和光纤连接V形槽(或类似的实施方法),从而为光学引擎提供电气和光学互连。

具体来说,在SOI制造过程中,由于热处理的原因,硅中所含的间隙氧往往会在晶核上析出,从而导致体微缺陷的产生。这些缺陷可以充当所谓的“吸杂中心”,吸引潜在的金属污染。此外,还需要这些缺陷来阻止位错的传播,以确保衬底对热应力的机械鲁棒性,从而防止产生膜裂缺陷(也称滑移线)。

然而,用于在硅衬底上创建V形槽或TSV的干法蚀刻也会受到体微缺陷密度的不利影响。体微缺陷会在蚀刻和金属填充过程中造成微掩膜,从而导致缺陷,由于整个芯片上TSV电阻率的变化,有可能给晶圆代工厂带来重大的良率损失。

为了实现新的硅光子技术,某些特定开发有助于SOI晶圆操作衬底提供应对这些挑战所需要的特性。在SOI掩埋氧化层下方创建无体微缺陷区(也称为洁净区)具有双重优势,既能进行无缺陷蚀刻以形成光纤连接V形槽或电气TSV,又能保持SOI衬底在热处理中的鲁棒性。


洁净区操作硅晶圆技术的横截面激光散射断层扫描图像。从洁净区去除体微缺陷,厚度约为100 µm,更低区域仍存在体微缺陷,以保持晶圆的机械性能、正确的几何形状以及对热处理、BEOL和封装处理的整体鲁棒性。

AI的现在与未来

硅光子技术为AI架构提供的光互连有望彻底变革AI算法,并进一步提升这些复杂系统的能力,实现更高效的结构,进而以更高的性能适应日益复杂的工作负载。随着AI网络的内在演进,硅光子技术以及多芯片模块中的异构集成将改变交换层,从而以所需的互连密度和成本实现更低的延迟和功耗。

本文源自SOITEC,麦姆斯咨询编译。

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 341浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 316浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 108浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 345浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 456浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 557浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 49浏览
  • 在全球制造业加速向数字化、智能化转型的浪潮中,健达智能作为固态照明市场的引领者和智能电子以及声学产品的创新先锋,健达智能敏锐捕捉到行业发展的新机遇与新挑战,传统制造模式已难以满足客户对品质追溯、定制化生产和全球化布局的需求。在此背景下, 健达智能科技股份有限公司(以下简称:健达智能)与盘古信息达成合作,正式启动IMS数字化智能制造工厂项目,标志着健达智能数字化转型升级迈入新阶段。此次项目旨在通过部署盘古信息IMS系统,助力健达实现生产全流程的智能化管控,打造照明行业数字化标杆。行业趋势与企业挑战
    盘古信息IMS 2025-04-30 10:13 53浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 95浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 297浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 109浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 303浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 213浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦